首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
农学   15篇
  1篇
农作物   2篇
植物保护   20篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
Four foliar and two stem-base pathogens were inoculated onto wheat plants grown in different substrates in pot experiments. Soils from four different UK locations were each treated in three ways: (i) straw incorporated in the field at 10 t ha−1 several months previously; (ii) silicon fertilization at 100 mg L−1 during the experiment; and (iii) no amendments. A sand and vermiculite mix was used with and without silicon amendment. The silicon treatment increased plant silica concentrations in all experiments, but incorporating straw was not associated with raised plant silica concentrations. Blumeria graminis and Puccinia recondita were inoculated by shaking infected plants over the test plants, followed by suitable humid periods. The silicon treatment reduced powdery mildew ( B. graminis ) substantially in sand and vermiculite and in two of the soils, but there were no effects on the slight infection by brown rust ( P. recondita ). Phaeosphaeria nodorum and Mycosphaerella graminicola were inoculated as conidial suspensions. Leaf spot caused by P. nodorum was reduced in silicon-amended sand and vermiculite; soil was not tested. Symptoms of septoria leaf blotch caused by M. graminicola were reduced by silicon amendment in a severely infected sand and vermiculite experiment but not in soil or a slightly infected sand and vermiculite experiment. Oculimacula yallundae (eyespot) and Fusarium culmorum (brown foot rot) were inoculated as agar plugs on the stem base. Severity of O. yallundae was reduced by silicon amendment of two of the soils but not sand and vermiculite; brown foot rot symptoms caused by F. culmorum were unaffected by silicon amendment. The straw treatment reduced severity of powdery mildew but did not detectably affect the other pathogens. Both straw and silicon treatments appeared to increase plant resistance to all diseases only under high disease pressure.  相似文献   
2.
The centre of origin of the globally distributed wheat pathogen Parastagonospora nodorum has remained uncertain because only a small number of isolates from the Fertile Crescent were included in earlier population genetic and phylogeographic studies. We isolated and genetically analysed 193 P. nodorum strains from three naturally infected wheat fields distributed across Iran using 11 neutral microsatellite loci. Compared to previous studies that included populations from North America, Europe, Africa, Australia, and China, the populations from Iran had the highest genetic diversity globally and also exhibited greater population structure over smaller spatial scales, patterns typically associated with the centre of origin of a species. Genes encoding the necrotrophic effectors SnToxA, SnTox1, and SnTox3 were found at a high frequency in the Iranian population. By sequencing 96 randomly chosen Iranian strains, we detected new alleles for all three effector genes. Analysis of allele diversity showed that all three effector genes had higher diversity in Iran than in any population included in previous studies, with Iran acting as a hub for the effector diversity that was found in other global populations. Taken together, these findings support the hypothesis that P. nodorum originated either within or nearby the Fertile Crescent with a genome that already encoded all three necrotrophic effectors during its emergence as a pathogen on wheat. Our findings also suggest that P. nodorum was the original source of the ToxA genes discovered in the wheat pathogens Phaeosphaeria avenaria f. sp. tritici 1, Pyrenophora tritici-repentis, and Bipolaris sorokiniana.  相似文献   
3.
R. Ecker    A. Cahaner  A. Dinoor 《Plant Breeding》1990,104(3):218-223
The inheritance of resistance in the wild wheat species Ae. speltoides L. to Septoria glume blotch (Septoria nodorum Berk.) was investigated. It was characterized by two parameters measured on detached leaves, namely lesion size (LS) and length of latent period (LP), and by the severity of the disease under field conditions (DS). The genetic analysis was based on the F1 and F2 generations of a 4 × 4 diallel cross between four Ae. speltoides accessions showing differential resistance to the pathogen. The three parameters of resistance were highly correlated. Considerable heterosis for resistance was found for each of the parameters in most of the diallel combinations. The estimates of broad-sense heritability were moderately high (0.50 — LS, 0.60 — LP, 0.52 — DS), while the estimates of narrow-sense heritability were low (0.16 for LS, 0.20 for LP, 0.25 for DS). There were no indications for genie interaction. It is suggested that the resistance is controlled by at least two genes with over-dominance of the alleles for higher resistance. Highly resistant Ae. speltoides accessions are a potential source of germplasm for improving the resistance of cultivated wheats to Septoria glume blotch. The possibility of using dominant alleles for resistance in hybrid cultivars is discussed.  相似文献   
4.
Leaf spotting diseases of wheat (Triticum spp.) are widespread in western Canada. Because these diseases are residue-borne, they are expected to be affected by changes in the quality and quantity of crop residues. A field study was conducted to determine the effects of summerfallow and tillage practices on leaf spotting diseases of spring wheat (T. aestivum L.) in the semiarid area of the western Canadian prairies. Leaf spot severity was greater in wheat grown after fallow than in continuous wheat when these systems were managed using either cultivator- or zero-tillage methods. Disease severity in wheat after fallow was similar in all three tillage methods: cultivator-, reduced-, and zero-tillage. Pyrenophora tritici-repentis (Died.) Drechs. (tan spot) was the pathogen most commonly isolated from lesioned leaf tissue. Crop residues collected in the spring of 1995 and 1996 from cultivator- and zero-tillage treatments were examined for the presence and density of fungal infective structures. The density of mature and immature structures, especially of P. tritici-repentis, was greater in residues from two years previous than in those from the previous growing season. Most of the residues in the continuous wheat system were from the previous crop. The apparent lower amount of initial inoculum available in a continuous wheat system than in wheat grown after fallow would explain the higher leaf spotting severity in the latter system. In addition, lower levels of infective structures on residues were found in wheat after fallow in zero- rather than in cultivator-tillage. However, similar disease levels in cultivator- and zero-tillage treatments suggest that the more favourable microclimate for disease development in a zero-tillage system might have compensated for the lower amounts of residue-borne inoculum.  相似文献   
5.
A field study is described which explored the possibility of controlling Stagonospora nodorum and Septoria tritici on wheat using a barley pathogen, Drechslera teres. Pre-treatment of wheat cv. Hussar flag leaves with D. teres resulted in a significant reduction in disease caused by S. nodorum and S. tritici, resulting in a significant increase in grain yield. When cv. Brigadier leaves were treated with D. teres prior to inoculation with S. nodorum there was an initial increase in disease expression whilst D. teres had no effect on symptoms produced by S. tritici on cv. Brigadier. There was significantly less disease on leaves of cvs. Hussar and Brigadier pre-treated with D. teres prior to inoculation with an equal mixture of S. nodorum and S. tritici compared to plants pre-treated with water. It is concluded that D. teres and other non-host pathogens show potential as biological control agents for S. nodorum and S. tritici.  相似文献   
6.
Data of the annual surveys of circa 100 commerical winter wheat fields were compiled to describe epidemics ofSeptoria spp. in the Netherlands during 1974–1986. In May, during the first node stage,S. tritici was dominant whileS. nodorum was virtually absent. In July, during ripening,S. tritici on average dominated overS. nodorum, though in the most continental districts of the countryS. nodorum predominated.In May between 1974 and 1984, on average 56% of the fields showed leaf infections bySeptoria spp., while in July between 1975 and 1986, on average 83% of the fields showed leaf infections. Prevalence ofSeptoria spp. has increased during the surveys. Annual intensity ofSeptoria spp. in winter wheat crops was positively correlated with precipitation and negatively with average monthly sunshine duration during the harvest-month August of the previous growing season. The correlation with sunshine during August could indicate that ascospores play a major role in subsequent epidemics; but whether it is a causal relation remains to be answered.Present address: Center for Agrobiological Research (CABO-DLO), PO Box 14, 6700 AA Wageningen, the Netherlands  相似文献   
7.
8.
R. Ecker    A. Cahaner  A. Dinoor 《Plant Breeding》1990,104(3):224-230
The genetics of resistance to Septoria glume blotch (caused by the pathogen Septoria nodorum Berk.) in the wild wheat species Ae. longissima was investigated. The resistance was characterized by two parameters measured on detached leaves — lesion size (LS) and length of latent period (LP), and by disease severity (DS) under field conditions. Generations F1, F2 and F3, derived from a cross between two Ae. longissima accessions, were analyzed. The two parameters measured on detached leaves (LS and LP) were highly correlated, while DS was moderately correlated to both LS and LP. The mean LS and the mean LP of F1 generation indicated considerable dominance for resistance in both parameters. The estimates of broad-sense and narrow-sense heritability were moderate for LS and LP (0.21—0.55). Narrow-sense heritability for DS was high (0.77). Estimates of the number of genes controlling each of the parameters (LS, LP, DS) were between 2.5—3.2. It is suggested that the resistance is controlled by three to four quantitative genes with a partial dominance of the alleles for resistance. Indications for genie interaction were found in LS and in LP. A model of inheritance containing complementation between dominant resistance-alleles is suggested. Highly resistant Ae. longissima accessions are recommended as sources of germplasm for improving the resistance of cultivated wheats to Septoria glume blotch. The possibility of using dominant alleles for resistance in hybrid cultivars is discussed.  相似文献   
9.
Several methods for determining yield reduction resulting from Septoria nodorum blotch have appeared in the literature during the past decade. These methods varied from the measurement of effects of disease on components of yield to calculation of area of symptoms on certain leaves at different growth stages. We analyzed data from a uniform group of wheat entries in the USDA Septoria nursery that had been grown in seven locations in North America and Europe during the years 1982–1987. Symptom severity and height of symptom on the plant were compared to kernel number and kernel weight. Location, year-within-location and genotype were also considered. In the context of this study, we concluded that location, and year-within-location are the most important factors determining yield reduction (as measured by relative kernel weight). Selection directly for components of yield is quite effective, but selection by means of disease symptoms is often not correlated with yield. We also conclude that specific methods for relating symptoms to yield reduction that are applicable to a particular location are probably useful and appropriate for that location only.  相似文献   
10.
Mating type ratios and SSR marker analysis were used to study the genetic structure of Phaeosphaeria nodorum , the causal agent of glume blotch in wheat. The study was based on leaf collections in five fields located in different regions in Sweden. In total 302 isolates of P. nodorum were obtained from 203 sampling sites (including eight ascospore isolates). Three strong indications of sexual recombination were found: (i) the two mating types were present at a 1:1 ratio; (ii) the genetic structure was diverse, with many unique genotypes, and 69 of the 93 genotypes were only found once; and (iii) random association of alleles indicated that genetic recombination was frequent. However, asexual reproduction could not be excluded since identical genotypes were found within the fields. The fungal population had experienced a demographic bottleneck, as indicated by a low ratio of number of alleles to microsatellite size range ( M -value) of 0·5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号