首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
林业   1篇
  12篇
植物保护   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2006年   2篇
  2005年   3篇
  1997年   1篇
排序方式: 共有14条查询结果,搜索用时 296 毫秒
1.
Soil pH is one of the most influential variables in soil, and is a powerful factor in influencing the size, activity and community structure of the soil microbial community. It was previously shown in a century old artificial pH gradient in an arable soil (pH 4.0-8.3) that bacterial growth is positively related to pH, while fungal growth increases with decreasing pH. In an attempt to elucidate some of the mechanisms for this, plant material that especially promotes fungal growth (straw) or bacterial growth (alfalfa) was added to soil samples of the pH gradient in 5-day laboratory incubation experiments. Also, bacterial growth was specifically inhibited by applying a selective bacterial growth inhibitor (bronopol) along the entire pH gradient to investigate if competitive interaction caused the shift in the decomposer community along the gradient. Straw benefited fungal growth relatively more than bacterial, and vice versa for alfalfa. The general pattern of a shift in fungal:bacterial growth with pH was, however, unaffected by substrate additions, indicating that lack of a suitable substrate was not the cause of the pH effect on the microbial community. In response to the bacterial growth inhibition by bronopol, there was stimulation of fungal growth up to pH 7, but not beyond, both for alfalfa and straw addition. However, the accumulation of ergosterol (an indicator of fungal biomass) during the incubation period after adding alfalfa increased at all pHs, indicating that fungal growth had been high at some time during the 5-day incubation following joint addition of alfalfa and bronopol. This was corroborated in a time-series experiment. In conclusion, the low fungal growth at high pH in an arable soil was caused to a large extent by bacterial competition, and not substrate limitation.  相似文献   
2.
Recently, in addition to logging residues, stumps have become an important component in energy production since there is growing global interest in the use of renewable energy sources in order to decrease anthropogenic carbon emissions. Harvesting of stumps influences the forest floor by changing vegetation and soil organic layers and exposing mineral soil across large areas. We studied whether stump harvesting after clear felling poses further short-term changes in boreal forest soil decomposer community (microbes and mesofauna) and vegetation when compared to the traditional site preparation practice (mounding). In general, stump harvesting caused decline in enchytraeid abundance but did not induce further major changes in decomposer community otherwise nor in vegetation of each soil micro-habitat (intact soil and exposed mineral soil). However, the abundances of almost all decomposer animals were lower in the exposed mineral soil than in the intact soil. Stump removal increased the area of exposed mineral soil in the clear felled areas, leading to lower amount of high quality habitat for most decomposer organisms. Hence, it is obvious that there are (or will be) differences in the decomposer community dynamics between the treatments at the forest stand level. Both species richness and coverage of plants benefitted from large-scale exposure of mineral soil. Because the stump removal procedure disturbs soil organic layers and negatively affects the decomposer community, it has the potential to alter nutrient dynamics in forests.  相似文献   
3.
The relationship between decomposer diversity and ecosystem functioning is little understood although soils accommodate a significant proportion of worldwide biodiversity. Collembola are among the most abundant and diverse decomposers and are known to modify plant growth. We examined the effects of Collembola species diversity (one, two and three species belonging to different life history groups) and composition on litter decomposition and the performance of plant communities (above- and belowground productivity) of different functional groups (grasses, forbs and legumes). Collembola densities did not increase with diversity indicating niche overlap. Generally, Collembola species composition was a better predictor for ecosystem functioning than Collembola species number with the impacts of Collembola diversity and composition on ecosystem functioning strongly depending on plant functional group identity. Non-linear effects of Collembola diversity on litter decomposition and plant productivity suggest pronounced and context dependent species interactions and feeding habits. Net surface litter decomposition was decreased by Collembola, whereas root litter decomposition was at maximum in the highest Collembola diversity treatment. Forbs benefitted most from the presence of three Collembola species. Similarly, Collembola diversity influenced root depth distribution in a plant functional group specific way: while grass root biomass decreased with increasing Collembola diversity in the upper and lower soil layer, legume root biomass increased particularly in the lower soil layer. Idiosyncratic and context dependent effects of Collembola diversity and composition even in rather simple assemblages of one to three species suggest that changes in Collembola diversity may have unpredictable consequences for ecosystem functioning. The finding that changes in Collembola performance did not directly translate to alterations in ecosystem functioning indicates that response traits do not necessarily conform to effect traits. Distinct plant functional group specific impacts of Collembola diversity on root depth distribution are likely to modify plant competition in complex plant communities and add a novel mechanism how decomposers may affect plant community assembly.  相似文献   
4.
We designed a field experiment to evaluate how restriction of soil faunal movements affects decomposer community structure, food web architecture, and decomposition of organic matter. Intact soil cores (3cm thick, diameter 16cm) were placed either in “open” (mesh size 1mm, allowing all meso- and microfauna to move through) or “closed” (27μm, animal movement prevented except for the smallest microfauna) mesh bags in early May. Before being buried in the forest floor of a mixed spruce stand, hay litter was placed in the mesh bags in separate litter bags. The samplings took place 2 and 6 months after establishing the experiment. Additional “field samples” were taken from the adjacent soil to determine possible side effects of the mesh-bags. Physicochemical conditions, decomposition rate of hay litter, and total respiration of soil cores were identical in the two bag treatments. Enchytraeids increased significantly in the closed treatment, while macrofauna, such Coleoptera larvae and dipteran larvae, went close to extinction in the closed bags. The elevated enchytraeid number is in accordance with the findings of closed microcosm studies, and is best explained by reduced predation by macrofauna. Although a set of 14 mite taxa was found to distinctively reflect the degree of isolation, neither the total number of individuals nor the number of microarthropod taxa differed between the bag treatments, or between the bags and the field samples. It is concluded that in the time-span of one growing season, reduction in the spatial scale does not necessarily reduce the diversity of fauna but can significantly change the decomposer food-web architecture. Received: 5 February 1997  相似文献   
5.
We designed an experiment using litter bags with fine and coarse mesh size to analyse interacting effects between invertebrate decomposers and the number of litter species on litter disappearance rates. We used litter of nine broad-leaved tree species to compare disappearance rates of litter from single species with mixtures of two to six species. Species composition of litter and invertebrates interacted strongly in their effects on litter disappearance rate. Contribution of invertebrates to litter disappearance increased with time mainly for litter which disappeared slower in the absence of invertebrates. Disappearance rates were positively correlated with initial N content and negatively correlated to initial C content of litter. These relationships were stronger in the presence of invertebrates, suggesting that their activity is positively related to initial litter chemistry. Number of component litter species, however, had no effect on disappearance rate irrespective of the activity of invertebrates. Using individual rates of disappearance for single species, we calculated the expected rates of disappearance for each of the experimental mixtures of leaf litters. We found that mixtures of several species of leaf litter resulted in significant deviations from the expected values. These deviations showed a significant effect of the number of component litter species. However, this result was caused by a strong negative deviation of one single mixture of six species. The presence of invertebrates resulted in even greater deviations from the expected values, suggesting an important contribution of invertebrates to the effects of litter mixing on litter disappearance rates. Hence, our results underline the importance of idiosyncratic effects of species traits in mixtures. Our results suggest that the influence of invertebrate decomposers interacts with litter chemistry during decomposition, but is not affected by litter species richness per se.  相似文献   
6.
Decomposer microorganisms contribute to carbon loss from the forest floor as they metabolize organic substances and respire CO2. In temperate and boreal forest ecosystems, the temperature of the forest floor can fluctuate significantly on a day-to-night or day-to-day basis. In order to estimate total respiratory CO2 loss over even relatively short durations, therefore, we need to know the temperature sensitivity (Q10) of microbial respiration. Temperature sensitivity has been calculated for microbes in different soil horizons, soil fractions, and at different depths, but we would suggest that for some forests, other ecologically relative soil portions should be considered to accurately predict the contribution of soil to respiration under warming. The floor of many forests is heterogeneous, consisting of an organic horizon comprising a few more-or-less distinct layers varying in decomposition status. We therefore determined at various measurement temperatures the respiration rates of litter, F-layer, and H-layer collected from a Pinus resinosa plantation, and calculated Q10 values for each layer. Q10 depended on measurement temperature, and was significantly greater in H-layer than in litter or F-layer between 5 and 17 °C. Our results indicate, therefore, that as the temperature of the forest floor rises, the increase in respiration by the H-layer will be disproportionate to the increase by other layers. However, change in respiration by the H-layer associated with change in temperature may contribute minimally or significantly to changes of total forest floor respiration in response to changes in temperature depending on the depth and thickness of the layer in different forest ecosystems.  相似文献   
7.
Collembola are abundant and ubiquitous soil decomposers, being particularly active in the rhizosphere of plants where they are assumed to be attracted by high microbial activity and biomass. While feeding on root associated microorganisms or organic matter they may also ingest plant roots, e.g. particularly root hairs and fine roots. Employing stable isotope analysis we investigated Collembola (Protaphorura fimata Gisin) feeding preferences and types of ingested resources. We offered Collembola two resources with distinct isotope signatures: a C4 plant (Zea mays L.) planted in soil mixed with 15N labelled litter of Lolium perenne L. (C3 plant). We hypothesised that Collembola obtain their nutrients (C and N) from different resources, with their carbon being mainly derived from resources that are closely associated to the plant root, e.g. root exudates, causing enrichment in 13C in Collembola tissue, while the incorporated nitrogen originating from litter resources. In contrast to our hypothesis, stable isotope analysis suggests that in absence of plant roots Collembola derived both the incorporated C and N predominantly from litter whereas in presence of plant roots they switched diet and obtained both C and N almost exclusively from plant roots.The results indicate that Collembola in the rhizosphere of plants, being assumed to be mainly decomposers, in fact predominately live on plant resources, presumably fine roots or root hairs, i.e. are herbivorous rather than detritivorous or fungivorous. These findings have major implications on the view how plants respond to decomposers in the rhizosphere.  相似文献   
8.
Inputs of aboveground plant litter influence the abundance and activities of belowground decomposer biota. Litter-mixing studies have examined whether the diversity and heterogeneity of litter inputs affect decomposer communities in ways that can be predicted from monocultures. They have mainly attempted to detect non-additive effects of litter mixing, although individual species effects (additivity) as well as species interactions (non-additivity) may alter decomposition rates. To determine potential impacts of plant species loss on aboveground-decomposer linkages, we assessed both additive and non-additive effects of litter mixing on decomposer communities. A full-factorial litterbag experiment with leaves from four deciduous tree species was conducted, to assess responses of bacteria, fungi, nematodes, and microarthropods. Data were analyzed using a statistical method that first looked for additive effects based on the presence or absence of species and then any significant species interactions. We observed almost exclusively additive effects of all four litter species on decomposer biota, with each species exerting effects on different aspects of the community. These results imply that the consequences of species loss for the decomposer community will be largely predictable from knowledge of single species litter dynamics. The two species at opposite ends of the quality spectrum exerted the most effects. High-quality Liriodendron tulipifera supported a more diverse arthropod community and drove bottom-up effects on the decomposer food web. Low-quality Rhododendron maximum had negative effects on most groups of biota. Litter of mid-quality species exerted fewer effects. The influence of litter species richness on the Tylenchidae (nematodes) was the only non-additive effect of litter mixing. Together, these data demonstrate an effect of plant community composition on decomposer biomass, abundance, and diversity, confirming a link between above and belowground communities. We were able to identify the species to which the decomposer community is most sensitive, aiding predictions of the consequences of the loss of these dominant species on the decomposer community, with potential feedbacks for organic matter and nutrient turnover.  相似文献   
9.
Earthworms and soil arthropods are major groups involved in soil decomposition processes. Although the interaction between these organisms can influence decomposition rates, little is known about their population dynamics during the decomposition of organic matter. In this study, we used the pig manure decomposition process to evaluate the effects of the presence of the epigeic earthworm Eisenia fetida on seven groups of soil arthropods: springtails, astigmatid, prostigmatid, mesostigmatid and oribatid mites, psocids and spiders. We carried out an experiment in which low and high doses (1.5 and 3 kg, respectively) of pig manure were applied in consecutive layers to small-scale mesocosms with and without earthworms. The presence of E. fetida increased the overall number of soil arthropods regardless of the dose of manure applied. This result was mainly due to the presence of large populations of springtails and mesostigmatid mites. Springtails were more abundant in the new layers of the mesocosms, which indicated a preference for substrates with fresh organic matter and higher microbial biomass. The other arthropod groups were consistently favored by the presence of earthworms, but remained at low densities throughout the decomposition process. Only the psocids were negatively affected by the presence of E. fetida. These results suggest that the development of large populations of soil arthropods, mainly springtails, in the mesocosms with earthworms is a characteristic feature of the initial stages of the earthworm-driven decomposition process.  相似文献   
10.

In order to ascertain the degree to which disturbance and subsequent recovery of belowground biotic components (mycorrhizal and decomposer systems) influence successional dynamics, a portion of semiarid shrubland in northwest Colorado was mechanically disturbed in 1984. Two treatments, soil fumigation (fumigated with methyl bromide and not fumigated) and seeding (early-seral species, late-seral species, and not seeded) were imposed on 500 m2 plots in each of four replications. Aboveground annual production by species, and decomposition rates were measured in 1991, 7 years after the initial disturbance and treatments. Mycorrhizal infection potential had been previously measured at this site from 1984-1988. Seeding to late-seral species resulted in greater production rates (and greater community composition) of late-seral species, whereas seeding to early-seral species had only a minor effect when compared to unseeded plots 7 years after disturbance. Fumigation slowed the rate of succession on unseeded plots, primarily by decreased production of perennial grasses. Mycorrhizal infection potential, initially greatly reduced by the disturbance and by fumigation, recovered to near-background levels on unfumigated plots but not on fumigated plots after 4 years. Decomposition experiments suggest that seeding may have facilitated recovery of the decomposer system after initial disturbance and fumigation. Our results suggest that the redevelopment of soil biotic communities following disturbance has a significant impact on successional dynamics, particularly the replacement of early-seral annuals by mid-seral perennial grasses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号