首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
农作物   1篇
植物保护   14篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2011年   2篇
  2007年   2篇
  2003年   1篇
  2000年   1篇
  1998年   2篇
  1992年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
Monoconidial strains of Venturia nashicola Tanaka et Yamamoto were isolated from Japanese or Chinese white pear trees which had never been treated with sterol demethylation inhibitors (DMIs) and their baseline sensitivities to fenarimol were determined by mycelial growth tests on fungicide-amended culture media. Strains were also obtained from Japanese pear orchards, which had been intensively treated with DMIs for several years and monitored for the shifts of fenarimol sensitivity in comparison with the baseline sensitivity. Results suggested slight shifts to lower fenarimol sensitivity in strains isolated from DMI-treated Japanese pear orchards. However, in inoculation tests on pear seedlings, fenarimol still provided adequate control of V. nashicola strains with reduced sensitivity to fenarimol in vitro, suggesting that the performance of this fungicide will still be maintained in the field. © 1998 Society of Chemical Industry  相似文献   
3.
4.
Fungicides inhibiting sterol biosynthesis are frequently used for powdery mildew control and can be subdivided into sterol demethylation inhibitors (DMIs) and morpholines with different modes of action. Whereas fungicide resistance to DMIs (Rdmi) and morpholines (Rmor) has been continuously monitored, there are no data available on the combination of Rdmi and Rmor, which led us to ask whether multiple resistance to triadimenol (Rtria), representing DMIs and to fenpropimorph (Rfen), representing the morpholines, evolved in France from 1993 to 1996. The method used allowed testing of both chemicals simultaneously, with the same inoculum. In 1993, the resistance factor of the mean (RFM) of the French wheat mildew population was 9·59 for Rtria and 5·11 for Rfen. Resistance increased, leading to RFMs of close to 14 for Rtria and 8 for Rfen at the end of the study. From the analysis of single colony isolates (SCI) that are genetically uniform, the presence of multiple resistance and its increase were evident and in line with the results of bulk isolates. Covariance of resistance to both chemicals was close to one. In contrast to the increase of Rfen, the use of morpholines decreased. These effects are supposed to result from multiple selection due to the use of mixtures of DMIs and morpholines that have been favoured in recent years. Fungicide sensitivity is, in general, not normally but lognormally distributed in a population. A new way to evaluate and describe lognormal data is presented. It is easy and convenient to use and provides solutions for current problems in the literature with lognormal distributions. Multiple resistance, its evolution and persistance are discussed in relation to fungicide use and to implications for anti-resistance strategies. © 1998 Society of Chemical Industry  相似文献   
5.
6.
7.
Metabolism of imazalil (1-[2-(2,4-dichlorophenyl)-2-(2-propenyloxy)ethyl]-1H-imidazole) inPenicillium italicum isolates with a wild-type sensitivity and with various degrees of resistance to sterol demethylation inhibitors was studied in liquid cultures. The metabolite 1-[2(2,4-dichlorophenyl)-2-(2,3-dihydroxypropyloxy)ethyl]-1H-imidazole (R42243) was detected in the culture filtrate after prolonged incubation. The metabolism occurred in the propenyl side chain of imazalil probably through epoxidation and hydratation. This is the first report of such a conversion of imazalil in fungi. R42243 was much less toxic toP. italicum than imazalil. Therefore, the metabolism can be regarded as a detoxification step. Both wild-type and resistant isolates metabolized imazalil, but metabolism by resistant isolates was faster than by the wild-type isolate. This is probably caused by a relatively strong inhibition of growth of the wild-type isolate by the fungicide. Results indicate that the detoxification of imazalil does not operate as a mechanism of resistance. This conclusion was confirmed by the fact that resistant isolates showed cross-resistance to miconazole and R42243, which had a similar structure as imazalil except for the propenyl side chain.  相似文献   
8.
Two hundred isolates ofBotrytis cinerea were collected from greenhouse vegetables between 2003 and 2006 to determine their baseline sensitivity to triadimefone, penconazole, tebuconazole and fenhexamid. Mean values of 50% effective concentrations (EC50) of inhibiting growth were 4.853±5.102, 0.41±0.215, 0.19±0.099 and 0.36±0.891 mgl −1, respectively (mean±SD). Individuals ofB. cinerea in the population differed by a factor (EC50 of the least sensitive isolate/EC50 of the most sensitive isolate) of 6625, 20, 603 and 1800, respectively. Naturally fenhexamid-resistant isolates were detected with an unexpected high frequency of 10% although the pathogen population had never been exposed to this fungicide. The resistance level (mean EC50 of resistant isolates / mean EC50 of sensitive isolates) was 19.5. These naturally resistant isolates also were resistantin vivo, and there was no significant difference in growth rate, conidial production or pathogenicity ability between naturally resistant and wild sensitive isolates. These results indicated that there was a potential risk of practical resistance if fenhexamid was applied alone. Negative cross-resistance was observed between fenhexamid and tebuconazole in 90% of the naturally resistant isolates. Moreover, an obvious synergism of the antifungal activity of fenhexamid by tebuconazole was demonstrated in some of the naturally fenhexamid-resistant isolates. http://www.phytoparasitica.org posting May 9, 2007.  相似文献   
9.
10.
BACKGROUND: Septoria leaf blotch is the most important disease of wheat in Europe. To control this disease, fungicides of the 14α‐demethylase inhibitor group (DMIs) have been widely used for more than 20 years. However, resistance towards DMIs has increased rather quickly in recent years. The objective of this study was to evaluate, on plants and under controlled conditions, the protective and curative efficacy of the DMI fungicide prothioconazole against three current isolates of M. graminicola, chosen to belong to different DMI‐resistant phenotypes. Fungicide efficacy was assessed by visual symptoms and by quantitative real‐time polymerase chain reaction (PCR). RESULTS: With a protective fungicide application, prothioconazole was always effective against each isolate. This was in accordance with the EC50 results. However, curative efficacy differed between the isolates. It remained at a good level, between 60 and 70% against one isolate, whereas it was strongly affected by late applications from 7 days post‐inoculation with the two other isolates. CONCLUSION: A protective application of prothioconazole in wheat crops could be the best strategy to keep a high efficacy against Septoria leaf blotch. Copyright © 2011 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号