首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   5篇
林业   1篇
农学   11篇
  6篇
综合类   11篇
农作物   8篇
畜牧兽医   2篇
园艺   4篇
植物保护   16篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
1.
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in Brassicaceae. It is widespread in Italy and severe outbreaks occur under conditions that favour disease development. In this study a multilocus sequence typing approach (MLST) based on the partial sequence of seven loci was applied to a selection of strains representative of the main areas of cultivation and hosts. The aim was to investigate whether the long tradition of brassica crops in Italy has influenced the evolution of different Xcc populations. All loci were polymorphic; 14 allelic profiles were identified of which 13 were unique to Italian strains. Based on the seven loci, the most common genotype within the Italian Xcc strains (AP1) was also the most representative genotype found in worldwide Xcc strains. This genotype was included in a new clonal complex in addition to three other clonal complexes already identified in Xcc populations. The phylogenetic reconstruction using a concatenated dataset of four conserved protein-coding genes, dnaK, fuyA, gyrB and rpoD, showed that the Italian strains belonged to two genetic groups. Physiological races were also investigated for the first time in Italy. The race structure of Xcc was determined by inoculating eight differential Brassica lines belonging to five species and showed that, in Italy, race 4 is the most widespread, followed by races 1 and 6. No correlation was found between allelic profiles, host of isolation, geographical origin and races, although a prevalent race was identified within the same clonal complex.  相似文献   
2.
盐胁迫是严重影响作物生长发育的主要非生物胁迫之一。植物在盐胁迫下会产生一系列生理生化变化,创制改良耐盐种质、培育耐盐品种是提高农作物耐盐性的有效手段。十字花科作物是重要的蔬菜和经济作物。本文系统总结了近年来国内外十字花科作物耐盐性研究的相关进展,主要包括耐盐种质鉴定方法及技术、耐盐种质筛选、耐盐分子机理等,以期为十字花科作物耐盐种质创制和新品种遗传选育提供有益的参考。  相似文献   
3.
为了解外来入侵植物银花苋(Gomphrena celosioides)的潜在生态危害,采用不同器官作供体对3种作物种子萌发和幼苗生长进行化感效应测试。结果表明:总体上,花、叶水提液低浓度处理对萝卜(Raphanus sativus)、芥菜(Brassica juncea)和菜心(B.parachinensis)种子的萌发率和根长生长有抑制作用,且随着浓度提高抑制程度加大,部分达极显著水平。低浓度的花、叶水提液对作物茎(芽)长生长有一定促进作用,但随着浓度提高促进作用降低,高浓度处理则出现显著抑制。比较综合效应指数,叶水提液比花水提液的化感作用强;叶水提液对3种作物的化感作用表现为芥菜>萝卜>菜心,而花水提液则为萝卜>芥菜>菜心。因此,作为外来入侵植物,银花苋因具较强的化感效应,需加强防治。  相似文献   
4.
This study investigated the ability of an endophytic fungus Acremonium alternatum to reduce clubroot formation in the model plant Arabidopsis thaliana, which is highly susceptible to Plasmodiophora brassicae . Quantitative PCR demonstrated that A. alternatum colonized the P. brassicae -infected roots and shoots of the host plant. When Arabidopsis plants were co-inoculated with P. brassicae and A. alternatum , gall formation was reduced as shown by the reduction of the disease index (DI) by up to 50% compared to plants only infected with P. brassicae, whereas the infection rate was lowered by about 20% only in several, but not all, experiments. Clubroot was similarly suppressed when plants were inoculated with autoclaved A. alternatum spores or spore extracts, showing that viable spores were not needed. However, A. alternatum spores did not inhibit P. brassicae resting spore germination. Compared to the normal root galls, the smaller root galls on A. alternatum -inoculated plants contained fewer resting spores of the clubroot pathogen. It was thus hypothesized that inoculation with A. alternatum delayed the development of P. brassicae . Using quantitative RT-PCR to monitor the expression of P. brassicae genes differentially expressed during the development of the disease, a delayed pathogen development was corroborated. Furthermore, greenhouse experiments identified a time window in which the endophyte had to be administered, where the latest effective time point was 5 days before inoculation with P. brassicae and the optimum treatment was to administer A. alternatum and P. brassicae at the same time. These results indicate that A. alternatum and perhaps similar endophytes could be useful for the management of clubroot disease.  相似文献   
5.
Commercial productivity of watercress (Rorippa nasturtium-aquaticum) can be adversely affected by the pathogenic crook-root fungus, Spongospora subterranea f.sp. nasturti, and watercress viruses. As there are no effective control measures for these diseases, attempts have been made to breed varieties resistant to the crook-root pathogen. This work has been hindered by a lack of knowledge of the genetic base of commercial watercress, and the genetic distance between watercress and allied Brassicaceae which have been identified as candidates for hybridisation programmes. We measured the diversity within these two groups using the RAPD-PCR fingerprinting technique and analysed the data by both distance methods and principal co-ordinate analysis. Little genetic diversity was found within commercial watercress populations. However, watercress formed a unique cluster genetically distinct from other Rorippa species, but equidistant to Cardamine species. It was placed closer to Barbarea verna. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
Two root-colonizing Fusarium strains, Ls-F-in-4-1 and Rs-F-in-11, isolated from roots of Brassicaceae plants, induced the resistance in Lepidium sativum seedlings against Pythium ultimum. These strains caused an increase in the content of benzyl isothiocyanate, and of its precursor glucotropaeolin, in the roots of the host plants. The increased isothiocyanate content is one of the factors contributing to the resistance of L. sativum against P. ultimum. To be transformed into the fungitoxic compound benzyl isothiocyanate, glucotropaeolin has to be hydrolyzed by myrosinase, which can be produced either by plants or microorganisms. The Fusarium strain Ls-F-in-4-1 has a myrosinase activity but the strain Rs-F-in-11 has not. These results suggest that both strains are able to trigger the metabolic pathway leading to benzyl isothiocyanate production in the plant. In the case of the myrosinase-negative strain Rs-F-in-11, hydrolyzation into isothiocyanate is only due to the myrosinase activity of the plant, and in the other case, the myrosinase produced by the strain Ls-F-in-11 also would contribute to the production of isothiocyanate. This paper reports a new mode of action of non-pathogenic Fusarium strains in controlling P. ultimum.  相似文献   
7.
Plant-induced germination of Plasmodiophora brassicae resting spores was studied in a laboratory experiment. Spore reaction was analysed in nutrient solution with exudates from growing roots of different plant species – one host plant (Brassica rapa var. pekinensis) and four non-host plants (Lolium perenne, Allium porrum, Secale cereale and Trifolium pratense) – and in controls with distilled water and nutrient solution. It was found that root exudates from L. perenne stimulated spore germination more than exudates from the other plants, including those from the host plant. The effect could not be explained by differences in the nutritional composition of the solutions due to differential uptake of the plant species, or by differences in root activity, measured as exudation of soluble sugars. This is the first time such a separation of factors has been done in analysing the influence of plants on P. brassicae germination. Although stimulation of P. brassicae resting spore germination is not restricted to the presence of host plants, it seems to vary depending on the plant species.  相似文献   
8.
In Brassica oleracea, production of F1 hybrid seeds mainly makes use of the improved Ogura cytoplasmic male sterile (CMS) line. However, reliance on one particular line is a risk, and it would be advantageous to develop other CMS lines. In this study, we transferred Diplotaxis erucoides cytoplasm to B. oleracea cultivars using an alloplasmic B. rapaCMS line as a bridge plant to avoid incompatibility between donor and recipient plants. The new B. oleraceaCMS lines, which were derived by four generations of backcrossing, had small rudimentary anthers with no pollen grain and showed complete male sterility. There was no functional defect in other floral organs, and the ability to receive normal pollen did not appear to be impaired. Moreover, the B. oleraceaCMS lines carrying D. erucoides cytoplasm had larger leaf areas and a normal plastochron. As a consequence, the B. oleraceaCMS lines carrying D. erucoides cytoplasm have the potential to be valuable alternatives for use in commercial B. oleracea hybrid seed production.  相似文献   
9.
The impact of genetically modified canola (Brassica napus) on biodiversity has been examined since its initial stage of commercialization. Various research groups have extensively investigated crossability and introgression among species of Brassicaceae. B. rapa and B. juncea are ranked first and second as the recipients of cross-pollination and introgression from B. napus, respectively. Crossability between B. napus and B. rapa has been examined, specifically in terms of introgression from B. napus to B. rapa, which is mainly considered a weed in America and European countries. On the other hand, knowledge on introgression from B. napus to B. juncea is insufficient, although B. juncea is recognized as the main Brassicaceae weed species in Asia. It is therefore essential to gather information regarding the direct introgression of B. napus into B. juncea and indirect introgression of B. napus into other species of Brassicaceae through B. juncea to evaluate the influence of genetically modified canola on biodiversity. We review information on crossability and introgression between B. juncea and other related Brassicaseae in this report.  相似文献   
10.
Most wild plants and some crops of the Brassicaceae express self-incompatibility, which is a mechanism that allows stigmas to recognize and discriminate against “self” pollen, thus preventing self-fertilization and inbreeding. Self-incompatibility in this family is controlled by a single S locus containing two multiallelic genes that encode the stigma-expressed S-locus receptor kinase and its pollen coat-localized ligand, the S-locus cysteine-rich protein. Physical interaction between receptor and ligand encoded in the same S locus activates the receptor and triggers a signaling cascade that results in inhibition of “self” pollen. Sequence information for many S-locus haplotypes in Brassica species has spurred studies of dominance relationships between S haplotypes and of S-locus structure, as well as the development of methods for S genotyping. Furthermore, molecular genetic studies have begun to identify genes that encode putative components of the self-incompatibility signaling pathway. In parallel, standard genetic analysis and QTL analysis of the poorly understood interspecific incompatibility phenomenon have been initiated to identify genes responsible for the inhibition of pollen from other species by the stigma. Herewith, we review recent studies of self-incompatibility and interspecific incompatibility, and we propose a model in which a universal pollen-inhibition pathway is shared by these two incompatibility systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号