首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   8篇
  国内免费   7篇
农学   39篇
  9篇
综合类   42篇
农作物   43篇
畜牧兽医   1篇
植物保护   75篇
  2022年   1篇
  2021年   1篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   7篇
  2015年   7篇
  2014年   5篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   9篇
  2009年   10篇
  2008年   7篇
  2007年   14篇
  2006年   13篇
  2005年   4篇
  2004年   7篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   7篇
  1996年   8篇
  1994年   1篇
  1993年   5篇
  1991年   1篇
  1990年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有209条查询结果,搜索用时 0 毫秒
1.
太子参叶斑病病原菌鉴定及防治药剂筛选   总被引:3,自引:0,他引:3  
采用形态学结合分子系统学方法对引起贵州黄平县和六枝道地中药材种植基地太子参叶斑病的病原菌进行鉴定,并以菌丝生长法对75%百菌清可湿性粉剂、70%甲基硫菌灵可湿性粉剂、37%苯醚甲环唑可湿性粉剂、40%氟硅唑乳油以及1%申嗪霉素悬浮剂进行了室内药效筛选。结果表明:引起贵州太子参叶斑病的病原菌为Ascochyta versabilis,该病原菌为太子参病害新记录;5种杀菌剂除75%百菌清可湿性粉剂2 000倍对A.versabilis的抑菌率较低外(51.4%),其余4种供试杀菌剂均具有较强的抑菌作用。70%甲基硫菌灵可湿性粉剂2 000倍、37%苯醚甲环唑可湿性粉剂2 000倍和40%氟硅唑乳油2 000倍对A.versabilis的生长具有较强的抑制作用,其抑制率均高于90%;1%申嗪霉素悬浮剂2 000倍对该病原菌的抑制率为72.3%。  相似文献   
2.
A polymerase chain reaction (PCR)-based method was developed to detect DNA of Fusarium solani f. sp. glycines , the cause of soybean sudden death syndrome. Two pairs of primers, Fsg1/Fsg2 designed from the mitochondrial small subunit ribosomal RNA gene, and FsgEF1/FsgEF2 designed from the translation elongation factor 1-α gene, produced PCR products of 438 and 237 bp, respectively. Primer specificity was tested with DNA from 82 F. solani f. sp. glycines , 55 F. solani non-SDS isolates, 43 isolates of 17 soybean fungal pathogens and the oomycete Phytophthora sojae , and soybean. The sensitivity of primer Fsg1/Fsg2 was 10 pg while that of FsgEF1/FsgEF2 was 1 ng when using F. solani f. sp. glycines total genomic DNA or down to 103 macroconidia g−1 soil. Nested PCR increased the sensitivity of the PCR assay 1000-fold to 10 fg using primers Fsg1/Fsg2, and 1 pg using primers FsgEF1/FsgEF2. F. solani f. sp. glycines DNA was detected in field-grown soybean roots and soil by PCR using either single pairs of primers or the combination of two pairs of primers. The occurrence of F. solani f. sp. glycines was determined using nested PCR for 47 soil samples collected from soybean fields in 20 counties of Illinois in 1999. F. solani f. sp. glycines was detected in soil samples from all five Illinois Agricultural Statistic Districts including 100, 89, 50, 92 and 50% of the samples from East, Central, North-east and West Districts, respectively.  相似文献   
3.
通过对广州地区规模种植的野生蔬菜秋葵Abelmoschus esculentus(L.)Moench、紫背天葵Gynura bicolor DC.、香麻叶Corchorus capsularis L.、黄花菜Hemerocallis citrina Baroni、四稜豆Psophocarpus tetragonolobus(L.)DC.、一点红Emilia sonchifolia(L.)DC等的病害进行调查及病原菌鉴定,明确了8种真菌病害,分别是秋葵链格孢叶斑病Alternaria malvae Roum.et Letendre、秋葵壳二胞叶斑病Ascochyta abelmoschi Harter、紫背天葵链格孢叶斑病Alternaria tenuissima(Fr)Wiltshire、紫背天葵棒孢叶斑病Corynespora cassiicola Berk.&Curt.、香麻叶炭疽病Colletotrichum capsici(Syd.)Butl.&Bisby、黄花菜炭疽病Colletotrichum gloeosporioides(Penzo)Sacc.、一点红壳针孢叶斑病Septoria lactucae Passerini和四棱豆小球腔叶斑病Leptosphaeria blumeri E.Muller,并对各病原真菌的形态进行了描述。除黄花菜炭疽病外,其它7个均为国内未报道的植物真菌新病害。  相似文献   
4.
A genetic map was developed for the ascomyceteDidymella rabiei (Kovachevski) v. Arx (anamorph:Ascochyta rabiei Pass. Labr.), the causal agent of Ascochyta blight in chickpea (Cicer arietinum L.). The map was generated with 77 F1 progeny derived from crossing an isolate from the U.S.A. and an isolate from Syria. A total of 232 DAF (DNA Amplification Fingerprinting) primers and 37 STMS (Sequence-Tagged Microsatellite Site) primer pairs were tested for polymorphism between the parental isolates; 50 markers were mapped, 36 DAFs and 14 STMSs. These markers cover 261.4cM in ten linkage groups. Nineteen markers remained unlinked. Significant deviation from the expected 1:1 segregation ratios was observed for only two markers (Prob. of χ2<0.05). The implications of our results on ploidy level of the asexual spores are discussed. http://www.phytoparasitica.org posting Sept. 5, 2002.  相似文献   
5.
对白头翁叶斑病菌胞壁结合黑色素和胞外黑色素进行了理化性质和红外光谱扫描测定, 结果表明两者具有相似的理化性质, 均易溶于KOH、H2O2和NaClO, 不溶于水、乙醇和丙酮。红外光谱分析表明, 白头翁叶斑病菌YS-24菌株的胞壁结合黑色素与胞外黑色素为同一种类型的黑色素。DHN黑色素的特异性抑制剂—三环唑, 对白头翁叶斑病菌黑色素的产生有明显的抑制作用; 以白头翁叶斑病菌基因组DNA为模板, 通过PCR扩增, 得到了聚酮体合成酶基因的同源片段 AaPKS , 初步推断白头翁叶斑病菌黑色素合成属于DHN途径。  相似文献   
6.
大豆孢囊线虫(Heterodera glycines Ichinohe;Soybean Cyst Nematode,SCN)是一种土传的专性内寄生线虫。SCN的二龄幼虫侵入到大豆幼嫩的根组织中,导致大豆根内的细胞变形并与之形成“合胞体”。合胞体在形态上和生理上的变化是SCN直接诱导大豆基因表达的结果。本研究以高抗SCN的灰布支黑豆为材料,用大豆孢囊线虫二龄幼虫直接接种大豆的根系,应用DDRT—PCR技术及RDB(Reversedot—blotting)杂交鉴定,获得6个阳性cDNA克隆,分别是SCN侵染后5天的A32克隆(GenBank登录号为B1173978);侵染后10天的B12克隆(GenBank登录号为B1173979)、B71克隆(GenBank登录号为B1173980);侵染后15天的Cll克隆(GenBank登录号为B1173981)、CPl2(GenBank登录号为B1173982)克隆和CP32克隆(GenBank登录号为B1173983)。序列的同源比较表明,6个cDNA均与Shoemaker构建的大豆基因表达库中的cDNA序列有非常高的同源性,证明这些cDNA是大豆基因表达的产物。其中A32克隆的序列与控制拟南芥下胚轴生长的MYB转录因子、营养元素缺失诱导的番茄根的表达文库中的一个cDNA及番茄抗假单胞杆菌表达文库中的一个cDNA有较高的同源性。  相似文献   
7.
Rubeena  P. W. J. Taylor    P. K. Ades    R. Ford 《Plant Breeding》2006,125(5):506-512
Quantitative trait locus (QTL) analysis of ascochyta blight resistance in lentil was conducted using genomic maps developed from two F2 populations, viz. ILL5588/ILL7537 and ILL7537/ILL6002. Five QTLs for ascochyta blight resistance were identified by composite interval mapping (CIM) across four linkage groups (LG) in population ILL5588/ILL7537. Three QTLs were identified by CIM in population ILL7537/ILL6002 (two in close proximity on LGI and one on LGII). Two of these coincided with regions identified using multiple interval mapping (MIM) and were shown to be conditioned by dominant and partial dominant gene action. Together, they accounted for approximately 50% of the phenotypic variance of disease severity. Comparison between the two populations revealed a potentially common QTL and several common regions that contained markers significantly associated with resistance. This study demonstrated the transferability of QTLs among populations and identified markers closely linked to the major QTL that may be useful for future marker‐assisted selection for disease resistance.  相似文献   
8.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   
9.
Summary Genetics of resistance to Ascochyta fabae Speg. in Vicia faba L. was studied with a final objective to develop resistant faba bean varieties to Ascochyta blight. The study was conducted separately on 3 single spore isolates (AF10-2 and AF13-2 from Tunisia and AF4-3 from France) and belonging to different groups of virulence (GV1 and GV2). Important general combining ability (GCA) effects were found especially with isolates AF10-2 and AF4-3. Specific combining ability (SCA), although significant for the 3 isolates, was important only with AF13 -2, but less important than GCA. Additive gene effects were predominant to non-additive effects. Lines 29H and A8817 transmitted to their progenies resistance to the 3 isolates, whereas 14–12 and 19TB conferred resistance to their progenies only with isolates AF13-2 and AF4-3, respectively. In the material studied, resistance was generally controlled by dominant genes but also could be attributed to recessive genes although less frequent. Analysis of segregation in the F2 of 2 crosses between the resistant lines (A8817 and 29H) and the susceptible line (14–12) with isolate AF4-3 revealed dominant monogenic control at the level of leaves in the 2 resistant lines and, in addition, a recessive gene controlling resistance of stems. Non-allelic interactions were occasionally manifested and their origin appeared to be due to line 19TB. A recurrent selection scheme was proposed with the objective to develop improved open-pollination populations and synthetic varieties responding to the objective of the national Tunisian research programme on faba bean.  相似文献   
10.
Soybean cyst nematode (SCN Heterodera glycines Ichinohe) is one of the most important nationwide soybean diseases in China. A total of 38 soil specimens or locations in the area was sampled and tested for SCN races during 2001-2003 for the inspection of race distribution in Huang-Huai Valleys. A map of race distribution was constructed according to the data from both the present study and the published reports cited. Three areas, namely, the area of southeast to Jinan in Shangdong Province; the area of northern Henan Province and its border region to south of Hebei Province; and the area of Luohe, Zhoukou of Henan Province and Fuyang of Anhui Province mainly infested with Race 1 were identified. Race 4 was predominant in Shanxi Province, Beijing and the adjacent area of Henan, Shandong, and Anhui provinces, and the delta of Huanghe River in Shandong Province. Race 2 was mainly found in Liaocheng, Dezhou of Shangdong Province and Shijiazhuang of Hebei Province, and Jiaozuo and Huojia of Henan Province. Race 7 was distributed in the west part of Jiaodong Peninsula of Shandong Province and Kaifeng, Huaxian, Wenxian of Henan Province. Race 5 was found and scattered in Hebei and Henan Province. Race 9 was found in Shangqiu of Henan Province, which was reported for the first time in China. It can be seen that Race 1 and Race 4 were the two predominant races in Huang-Huai Valleys, and that research should focus on developing resistant cultivars of these races. There might exist other races in an area with some predominant races. The race substitution in the past decade was not obviously found, therefore, the results should be meaningful to future breeding for resistance to SCN in Huang-Huai Valleys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号