首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
林业   2篇
  1篇
综合类   4篇
园艺   14篇
  2022年   8篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2014年   4篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有21条查询结果,搜索用时 781 毫秒
1.
随着城市的快速发展,传统的“末端”雨水处理措施已经不适用.低影响开发(Low Impact Development,LID)是一种通过源头分散控制理念实现雨水控制与利用的雨水管理理念.总结了低影响开发的主要措施及研究进展,讨论了其在推广过程中的障碍和局限性,提出了低影响开发在推广过程中的解决方案,展望了低影响开发技术在我国的应用前景.  相似文献   
2.
In the last decades, urban sprawl and soil sealing led to an increase of urban flooding phenomena. Sustainable Drainage Systems (SuDS) seem able to weaken stormwater-related criticalities, enhancing sustainability and city resilience.Relying on a detailed and feasible preparatory study of SuDS feasible retrofit design, based on a punctual identification of the areas suitable for retrofitting and the most appropriate combination of SuDS technologies, the reported research aimed to assess the effectiveness of a sustainable drainage approach in Sesto Ulteriano (Italy), an urban catchment suffering from stormwater management concerns. In particular, using the approach of a typical scenario analysis, this comparative modeling analysis involved SWMM5 for the assessment of the differences in the catchment hydrological behaviour between the mentioned specific and feasible SuDS retrofitting scenarios and a potential one, where non-specificity is considered for SuDS retrofitting location. Besides, the analyses focused on investigating how rainfall severity, areal extension and land use typical feature could influence the effectiveness of the sustainable redevelopment of the urban area.Results indicate that SuDS projects based on potential designs, which does not account for the feasible suds location, might result in a significant overestimation of the hydrological benefit. They showed, indeed, an improved hydrological performance, with average total volume reductions of the Combined Sewer Overflows up to over 70 % (retrofitting the 8.3 % of the catchment area), that is about 40 % higher than those obtained under the same areal extension by the feasible scenarios. Moreover, it was found that there could be an optimal SuDS retrofitting percentage above which additional hydrological benefits are undetectable. Land use, resulting in the variability in the degree of imperviousness necessarily associated to a variability in the retrofitting potential, also seemed to affect SuDS hydrological performance and for this reason should be included in an overall assessment. SuDS also proved to act successfully on the actual maximum percentage of nodes of the drainage network above a 0.7 filling degree threshold (about 52 % under 10-year return period rainfall) reducing it to 24 % with a feasible retrofitting involving the 8.3 % of the study area.  相似文献   
3.
人工淡水湿地的水文过程模拟:综合系统法(摘要)(英文)@张立$Olentangy River Wetland Research Park,The Ohio State University,352 W.Dodridge Street,Columbus,OH 43210,USA @威廉.杰.米奇$Olentangy River Wetland Research Park,The Ohio State University,352 W.Dodri  相似文献   
4.
Understanding how trees influence water movement in an urban landscape is important because in an ‘engineered xeriscape’ small changes in rainfall frequency or magnitude have significant implications to plant water availability and mortality at one extreme, and stormwater runoff and flooding at the other. This study relates direct measures of tree canopy interception and discusses their implication for catchment hydrology in different urban landscape contexts. We measured canopy throughfall and stemflow under two eucalypt tree species in an urban street setting over a continuous five month period. Eucalyptus nicholii has a dense canopy and rough bark, whereas Eucalyptus saligna has a less-dense canopy and smooth bark. E. nicholii, with the greater plant area index, intercepted more of the smaller rainfall events, such that 44% of annual rainfall was intercepted as compared to 29% for the less dense E. saligna canopy (2010). Stemflow was less in amount and frequency for the rough barked E. nicholii as compared to the smooth barked E. saligna. However, annual estimates of stemflow to the ground surface for even the smooth barked E. saligna would only offset approximately 10 mm of the 200 mm intercepted by its canopy (2010).Tree canopy and bark characteristics should be considered when planting in pervious green space, or impervious streetscapes, because of their profound impact upon tree and surrounding water availability, soil water recharge or runoff. This study provides an evidence base for tree canopy impacts upon urban catchment hydrology, and suggests that rainfall and runoff reductions of up to 20% are quite possible in impervious streetscapes. Street tree canopies can function as a cost-effective compliment to water sensitive urban design for stormwater reduction benefits.  相似文献   
5.
Green infrastructure approaches leverage vegetation and soil to improve environmental quality. Municipal street trees are crucial components of urban green infrastructure because they provide stormwater interception benefits and other ecosystem services. Thus, it is important to understand the patterns and drivers of structural heterogeneity in urban street tree assemblages. In this study, we compared the forest structure of street trees across nine communities along both geographic and demographic gradients in metropolitan Cincinnati, Ohio, USA. Specifically, we used a two-part statistical model to compare both the proportion of sampled street segments containing zero trees, and basal area magnitude for street segments with trees. We made community-scale comparisons based on street tree management, socioeconomics, and geographic setting. Then, using modeled stormwater interception estimates from i-Tree Streets, we investigated the implications of heterogeneity in street tree assemblages for stormwater interception benefits. The forest structure of street trees varied across communities in relation to management practices, namely participation in the Tree City USA program. As a consequence of this structural difference, we observed a stark discrepancy in estimated stormwater interception between Tree City USA participants (128.7 m3/km street length) and non-participants (59.2 m3/km street length). While street tree assemblages did not vary by community poverty status, we did find differences according to community racial composition. In contrast to previous research, basal area was greater in predominantly black (i.e., African American) and racially mixed communities than in predominantly white communities. We did not observe structural differences across geographic strata. This research underscores the importance of proactive management practices for increasing the forest structure of street trees. Our findings regarding socioeconomics and geographic setting contrast previous studies, suggesting the need for continued research into the drivers of structural heterogeneity in street tree assemblages.  相似文献   
6.
This paper presents research that was undertaken to determine whether planting deciduous trees, using intensive tree planting schemes, on vacant and underutilized urban land provides significant hydrologic benefits. This work contributes to an ongoing discussion on how to use vacant and underutilized land productively, and may be important to land use decision-makers, whose policies support the use of green infrastructure for stormwater management. Tree growth parameters for four monoculture planting schemes were modeled (all trees had a 50.8 mm caliper at planting) and included (i) 450 Ginkgo biloba, (ii) 92 Platanus × acerifolia, (iii) 120 Acer saccharinum, and (iv) 434 Liquidambar styraciflua, on a 1.6-acre parcel. i-Tree Hydro (formerly UFORE-Hydro) was used to derive a simplified Microsoft Excel-based water balance model to quantify the canopy interception potential and evaporation, based on 7 years (2002–2008) of historical hourly rainfall and mean temperature data in Hamilton, Ontario, Canada. This study revealed that three of the species responded similarly, while one species (L. styraciflua) performed significantly better with respect to total canopy storage potential and evaporation, capturing and evaporating 2.9 m3/tree over the 7 years analyzed, or 1280 m3 for the total tree stand of 434 trees. The analyses presented herein demonstrate that the tree canopy layer was able to intercept and evaporate approximately 6.5%–11% of the total rainfall that falls onto the crown across the 7 years studied, for the G. biloba, P. × acerifolia and A. saccharinum tree stands and 17%–27% for the L. styraciflua tree stand. This study revealed that the rate at which a species grows, the leaf area index of the species as it matures, and the total number of trees to be planted need to be determined to truly understand the behavior and potential benefits of different planting schemes; had the mature leaf area been used as the sole indicator of the stormwater attenuating potential for each species, the A. saccharinum would have been the selected species. Also, had attenuation and evaporation per unit of tree been the only measurement reported, the P. × acerifolia stand would have been deemed the best performing tree, attenuating and evaporating 8.1 m3/tree. While the actual values presented herein may be uncertain because of a lack of locally-derived tree growth models, the approach described warrants further investigation.  相似文献   
7.
Green roofs provide a number of different urban ecosystem services (UESS), e.g. regulation of microclimate, support of air quality improvement, or stormwater retention. To estimate the spatial variation of green roof UESS across an urban area, a GIS-based mapping and spatial analysis methodology was established and applied to the city of Braunschweig, Germany. Based on the analysis of available geodata, in a first step, a quantity of 14,138 rooftops in the study area (14% of all buildings) was found to be generally suitable for greening. This resulted in a green roof area of 3 km2. Based on criteria such as roof slope and minimum roof size, nearly two-thirds of these buildings (8596 buildings, 8.6% of total number of buildings) were categorised ‘appropriate’ for greening and subject to green roof UESS analysis.The spatial distribution of green roof UESS was estimated based on the categories thermal urban climate, air quality, stormwater retention and biodiversity. Due to their potential benefits in the four UESS categories an overall assessment resulted in a number of 867 roofs (0.9% of total number of buildings) categorised as ‘high benefit’ from rooftop greening. Another 3550 buildings (3.5%) and 4179 buildings (4.2%) were defined as ‘moderate benefit’ and ‘low benefit’, respectively. The inner city area of Braunschweig appears as a hot-spot of green roof UESS, i.e. higher percentage of ‘high benefit’ green roofs in comparison to residential areas. The proposed method is a simple but straightforward approach to analyse urban green roof UESS and their spatial distribution across a city but it is sensitive to the quality of the available input geodata.  相似文献   
8.
Many amphibian species rely on both aquatic and terrestrial habitats to complete their life cycles. Therefore, processes operating both within the aquatic breeding habitat, and in the surrounding uplands may influence species distributions and community composition. Moreover, changes in land use adjacent to breeding site may degrade aquatic habitats. To assess land use effects on pond-breeding amphibian assemblages, we investigated relationships between land use, breeding habitat conditions, and breeding amphibian use of constructed wetlands in urban environments of the Baltimore metropolitan area, USA. Forest and impervious surface associations with species richness and occurrence occurred at spatial scales ranging from 50 to 1,000 m, with strongest relationships at 500 m. Forest and impervious surface cover within 1,000 m of ponds were also related to water and sediment quality, which in turn were capable of explaining a proportion of the observed variation in species richness and occurrence. Taken together, our results suggest that forest and other land covers within relatively proximal distances to ponds (i.e., within 50–1,000 m) may be influencing species richness directly via the provisioning of upland habitat, and indirectly via influences on within pond habitat quality. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
9.
Invasion of natural ecosystems by exotic species is a major threat to biodiversity globally. We assessed two alternative (but not exclusive) hypotheses to explain the success of exotic species in urban bushland on low fertility sandstone-derived soils in Sydney, Australia. These were that success of exotic species is promoted by: (1) plant attributes in particular disturbance types; and (2) freedom from herbivores. We tested these at sites subject to different types of disturbance: nutrient and water enrichment (below stormwater outlets), nutrient enrichment (riparian zones of creeks with an urban catchment) and physical disturbance (tracks), and control sites. At each site we estimated percentage cover of all species and surveyed leaves for damage by herbivores. Species were classified as native, non-invasive exotic or invasive exotic. We found that sites without any disturbance did not support exotic plants. Physically disturbed sites on low fertility soils supported only one exotic species, suggesting that nutrient enrichment is a critical prerequisite for exotic species invasion on low fertility soils. Exotic species cover was highest and native species richness most reduced in areas of highest nutrient enrichment. Both invasive exotic and non-invasive exotic species had significantly lower levels of leaf herbivory than native species, implying that release from pests alone cannot account for the success of invasive species. Specific leaf area of invasive exotic species was consistently higher than specific leaf area of non-invasive exotic and native species, regardless of disturbance type. In physically disturbed sites of higher soil fertility, exotic species were small herbs and grasses of long flowering duration and with small unassisted or wind-dispersed seeds. In sites subject to nutrient-enrichment, exotic species were more likely to be climbers, able to propagate vegetatively, and with seeds dispersed by vertebrates. Thus different plant attributes contribute to exotic species success under different disturbance types. The clearest consistent difference we found between invasive exotic and non-invasive exotic species was in specific leaf area, suggesting that large specific leaf area facilitates invasiveness.  相似文献   
10.
Modern cities are dominated by impervious surfaces that absorb, store and release heat in summer, create large volumes of runoff and provide limited biodiversity habitat and poor air quality can also be a health issue. Future climate change, including more frequent and extreme weather events will likely exacerbate these issues. Green infrastructure such as parks, gardens, street trees and engineered technologies such as green roofs and walls, facades and raingardens can help mitigate these problems. This relies on selecting plants that can persist in urban environments and improve stormwater retention, cooling, biodiversity and air pollution. However, plant selection for green infrastructure is challenging where there is limited information on species tolerance to heat and water variability or how these species can deliver multiple benefits. Therefore, we draw on research to illustrate how plant performance for green infrastructure can be inferred from plant attributes (i.e., traits) or from analysis of their natural distribution. We present a new framework for plant selection for green infrastructure and use a case study to demonstrate how this approach has been used to select trees and shrubs for Australian cities. We have shown through the case study and examples, how plant traits and species’ natural distribution can be used to overcome the lack of information on tolerance to both individual and multiple stressors; and how species contribute to the provision of benefits such as stormwater retention, cooling, biodiversity and air pollution mitigation. We also discuss how planting design and species diversity can contribute to achieving multiple benefits to make the most of contested space in dense cities, and to also reduce the risk of failure in urban greening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号