首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1302篇
  免费   79篇
  国内免费   116篇
林业   44篇
农学   94篇
基础科学   5篇
  158篇
综合类   461篇
农作物   98篇
水产渔业   62篇
畜牧兽医   108篇
园艺   35篇
植物保护   432篇
  2024年   2篇
  2023年   20篇
  2022年   38篇
  2021年   38篇
  2020年   37篇
  2019年   46篇
  2018年   32篇
  2017年   50篇
  2016年   49篇
  2015年   61篇
  2014年   59篇
  2013年   58篇
  2012年   76篇
  2011年   81篇
  2010年   64篇
  2009年   60篇
  2008年   58篇
  2007年   66篇
  2006年   54篇
  2005年   53篇
  2004年   44篇
  2003年   53篇
  2002年   46篇
  2001年   41篇
  2000年   39篇
  1999年   38篇
  1998年   31篇
  1997年   20篇
  1996年   35篇
  1995年   22篇
  1994年   11篇
  1993年   18篇
  1992年   30篇
  1991年   17篇
  1990年   13篇
  1989年   9篇
  1988年   9篇
  1987年   10篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1955年   1篇
排序方式: 共有1497条查询结果,搜索用时 31 毫秒
1.
为了研究拮抗细菌Enterobacter cloacae B8在野外水稻叶面上的定殖情况及拮抗作用,由自然选择和Tn5诱变从B8产生了一株抗菌素抗性突变体BX8.BX8能在含利福平达400μg/ml或卡那霉素达300μg/ml的LB培养基中生长.实验表明该抗菌素抗性的产生没有降低BX8的拮抗活性.该抗性比较稳定,在无抗菌素培养基中培养.BX8至少分裂生长60代内抗性不变.  相似文献   
2.
The pathogenicity and virulence of ten GreekPseudomonas syringae pv.syringae strains from different hosts (citrus, pear, apple, peach and cherry) were evaluated using three different laboratory methods, which produced results in good agreement. All ten strains were virulent on apple, pear, cherry and peach trees. The extent of tissue colonized varied considerably among strains and cultivars. On excised shoots and twigs of apple and pear, strains BPI 176, BPI 203, PI 2 and PI 14 were the most virulent and strains BPI 689, BPI 992, BPI 4, BPI 20, PI 18 and PI 19 were the least virulent. On excised shoots and twigs of peach and cherry, strains BPI 176, BPI 203, PI 2, PI 14, PI 18 and PI 19 were the most virulent and strains BPI 4 and BPI 20 were the least virulent. Moderate virulence was evinced by strains BPI 689 and BPI 992. These pathogenicity assays are proposed as rapid and reproducible screening systems to evaluate the susceptibility of apple, pear, cherry and peach cultivars to this bacterial pathogen.  相似文献   
3.
As plants mature it has been observed that some become more resistant to normally virulent pathogens. The ability to manifest the Age-Related Resistance (ARR) response in Arabidopsis to Pseudomonas syringae pathovars tomato (Pst) coincided with the transition to flowering in plants both delayed and accelerated in the transition to flowering. ARR was also associated with a change in PR-1 gene expression, such that young plants expressed PR-1 abundantly at 3 days post inoculation (dpi) while mature plants expressed much less. The Arabidopsis ARR response requires SA accumulation via isochorismate synthase (ICS1) [24]. ICS1 was expressed one dpi with virulent and avirulent Pst in both young and mature plants. The ARR response was also effective versus avirulent Pst providing an additional 4-fold limitation in bacterial growth. Arabidopsis ARR was found to be ineffective against two necrotrophs, Erwinia carotovora subspecies carotovora (bacterium) and Botrytis cinerea (fungus) and one obligate biotroph, Erysiphe cichoracearum (fungus). However, mature wild type, SA-deficient sid2 and NahG plants supported little growth of the obligate biotrophic oomycete, Peronospora parasitica. Therefore ARR to P. parasitica appears to be SA-independent, however the level of ARR resistance was somewhat reduced in these mutants in some experiments. Thus, there may be numerous defence pathways that contribute to adult plant resistance in Arabidopsis.  相似文献   
4.
The plant apoplast is an important mediator of communication between the cell cytoplasm and its surroundings. Plant cell suspensions offer a convenient model system to gain insight into apoplastic physiology. Here, we describe a novel phenomenon that took place when two naturally occurring phenolics were added together to either soybean or tobacco cell suspensions. Acetosyringone (AS) and/or hydroxyacetophenone (HAP), phenolics found in the extracellular/apoplast of tobacco cells, were added to soybean or tobacco cell suspensions undergoing an oxidative burst. Individually, AS appeared to be utilized as a typical peroxidase substrate to scavenge hydrogen peroxide, while HAP was utilized at a much lower rate. However, when added together the rate of utilization of both phenolics increased and surprisingly resulted in the production of hydrogen peroxide. We have further characterized this novel phenomenon in suspension cells. This study demonstrates that certain phenolics in plants can cause co-oxidation which, as in animals, could alter the structure and bioactivity of surrounding phenolics.  相似文献   
5.
Common bacterial blight (CBB) in edible beans (Phaseolus vulgaris), incited Xanthomonas campestris pv. phaseoli, reduces bean yields and seed quality. The main objective of this study was to determine resistance to common bacterial blight in bean genotypes. Twenty-two bean genotypes grown in Turkey including common and snap bean cultivars/lines were collected from different parts of Turkey and tested for resistance against to Xanthomonas campestris pv. phaseoli strain MFD-11. All the common and snap bean lines/cultivars tested were moderately susceptible, susceptible or highly susceptible, except AG-7117 which was found resistant to Xanthomonas campestris pv. phaseoli. This is the first report of a resistance source in a common bean line (AG-7117) against Xanthomonas campestris pv. phaseoli.  相似文献   
6.
Xanthomonas campestris pv. vitians , the causal agent of bacterial leaf spot of lettuce (BLS), can be seedborne, but the mechanism by which the bacteria contaminates and/or infects lettuce seed is not known. In this study, the capacity of X. campestris pv. vitians to enter and translocate within the vascular system of lettuce plants was examined. The stems of 8- to 11-week-old lettuce plants were stab-inoculated, and movement of X. campestris pv. vitians was monitored at various intervals. At 4, 8, 12 and 16 h post-inoculation (hpi), X. campestris pv. vitians was recovered from 2 to 10 cm above (depending on stem length) and 2 cm below the inoculation site. Xanthomonas campestris pv. vitians was also recovered from surface-disinfested stem sections of spray-inoculated plants. Together, these results are consistent with X. campestris pv. vitians invading and moving systemically within the vascular system of lettuce plants. To investigate the mechanism of seed contamination, lettuce plants at the vegetative stage of growth were spray-inoculated with X. campestris pv. vitians and allowed to develop BLS. Seed collected from these plants had a 2% incidence of X. campestris pv. vitians external colonization, but no bacteria were recovered from within the seed.  相似文献   
7.
 以稀释倒平板法从0型菌086和IV型菌967-4和9620中分离到59个单细胞系;在12个近等基因系品种上,086和其单细胞系表现为弱毒力,2个IV型菌及其单细胞系能克服抗病基因Xa-1、2、3、8、10、11、14的抗性,不能克服Xa-21、4、5、7、13的抗性;带主效抗病基因的品种Asominori、XM5、M41、XM6和丰锦能把3个母株的59个单细胞系区分为12种数量差异或质量差异的不同致病型;将此5品种与近等基因系配合,适合作为病菌致病基因变异频度监测的寄主;采用"段叶沙培,切口取菌胶"法分离病菌,在中国致病型鉴定品种上划分的致病型,是田间病菌群体毒力结构的表型反应。  相似文献   
8.
Snow mould, caused by Microdochium nivale , and seedling blight caused by members of the Fusarium complex, are cereal diseases of great economic importance in many temperate zones. In a glasshouse bioassay designed to enhance disease, about 600 plant-associated bacterial isolates obtained by different methods were screened for suppressive effects in wheat against infection caused by Fusarium culmorum . Although most of the isolates tested had a neutral effect on test plants and disease development, a few were synergistic to the pathogen and about one-fifth showed > 80% disease suppression. During five consecutive growing seasons, 164 bacterial isolates were tested in field experiments against both F. culmorum and M. nivale as causal agents of seedling blight. Tests for effects on yield in experiments with spring and winter wheat, performed in different climatic regions of Sweden, showed that disease-suppressive effects were repeatable. The most efficient isolates, three fluorescent pseudomonads and a species of Pantoea , suppressed disease equal to that of the fungicide guazatine, both with respect to crop stand and yield. Seed treatment with Pantoea sp. (isolate MF 626) increased yield by an average of more than 500 kg ha−1 in six field experiments.  相似文献   
9.
The phytopathogens Xanthomonas oryzae pathovar (pv.) oryzae and Xanthomonas axonopodis pv. citri each contain several avrBs3/pthA family genes. Structural features of these genes important for avirulence and/or virulence functions include a central region of multiple direct repeats and three nuclear localization signals (NLSs) and an acidic activation domain (AAD) at the 3′ end. To identify other regions critical to function in the 3′ ends of these genes, we constructed several chimeras using apl1 and apl2 from X. axonopodis pv. citri and avrXa10 and avrXa7 from X. oryzae pv. oryzae and evaluated their functions by inoculation to citrus and rice. The apl1 and avrXa7 genes are major virulence determinants in citrus and rice, respectively, while the contributions of apl2 and avrXa10 to virulence are negligible or not measurable. Constructs that contained a 417 bp HincII-SphI fragment from the 3′ end of apl1 in combination with the repeats from avrXa7, avrXa10, and apl1 caused a canker phenotype on citrus. Interchange of the HincII-SphI fragment between avrXa7 and avrXa10 abolishes avrXa7 avirulence function and reduces its virulence but it does not affect avrXa10 avirulence function in rice. avrXa7 caused a hypersensitive response (HR) in citrus and replacement of it's 3′ end with that of apl1 resulted in loss of canker and induction of HR. Thus, the HincII-SphI fragment of the avrBs3/pthA gene family is important for avirulence and virulence functions in two different plant species, Oryza sativa and Citrus natsudaidai HAYATA.  相似文献   
10.
Resistance to pea bacterial blight (Pseudomonas syringae pv. pisi) in different plant parts was assessed in 19 Pisum sativum cultivars and landraces, carrying race-specific resistance genes (R-genes) and two Pisum abyssinicum accessions carrying race-nonspecific resistance. Stems, leaves and pods were inoculated with seven races of P. s. pv. pisi under glasshouse conditions. For both race-specific and nonspecific resistance, a resistant response in the stem was not always associated with resistance in leaf and pod. Race-specific genes conferred stem resistance consistently, however, there was variability in the responses of leaves and pods which depended on the matching R-gene and A-gene (avirulence gene in the pathogen) combination. R2 generally conferred resistance in all plant parts. R3 or R4 singly did not confer complete resistance in leaf and pod, however, R3 in combination with R2 or R4 enhanced leaf and pod resistance. Race-nonspecific resistance conferred stem resistance to all races, leaf and pod resistance to races 2, 5 and 7 and variable reactions in leaves and pods to races 1, 3, 4 and 6.Disease expression was also studied in the field under autumn/winter conditions. P. sativum cultivar, Kelvedon Wonder (with no R genes), and two P. abyssinicum accessions, were inoculated with the most frequent races in Europe under field conditions (2, 4 and 6). Kelvedon Wonder was very susceptible to all three races, whereas P. abyssinicum was much less affected. The combination of disease resistance with frost tolerance in P. abyssinicum enabled plants to survive through the winter. A breeding strategy combining race-nonspecific resistance derived from P. abyssinicum with race-specific R-genes should provide durable resistance under severe disease pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号