首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
园艺   1篇
  2006年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
This study was carried out to investigate the cause of stone cell formation in pear (Pyrus pyrifolia cv. ‘Niitaka’) flesh. Potted plants grown in a glass house were subjected to water stress conditions without irrigation for 30 days from 30 days before full bloom (BFB treatment), full bloom (FB treatment) and 30 days after full bloom (AFB treatment). Control plants were drip-irrigated daily maintaining a soil matrix potential around −40 ± 5 kPa. The formation of stone cells in pear flesh increased in the FB treatment and AFB treatment plants and this tendency was sustained until the harvest season. Root activity was investigated 60 days after full bloom (DAFB) and the triphenyltetrazolium chloride (TTC) reduction potential, the formazan content and leaf water potential were investigated 30, 45, and 60 DAFB. Root activity decreased progressively due to the effect of water stress. Also, the Ca content in leaf and flesh was lower. The peroxidase activity was high in the flesh at the early stages of fruit growth and decreased at the late stages of fruit growth, and then a higher increase of peroxidase activity was observed in water-stressed fruit. The reduction in calcium content of leaf and fruit in plants under water stress may be related to the reduction of root activity and leaf water potential. The increase in peroxidase activity under water stress may be due to limited calcium absorption. Higher peroxidase activity may induce the accumulation of lignin in the cell wall and promote the formation of stone cells in pear flesh. We conclude that water stress condition during the early stages of fruit growth is one of several factors that determine the formation of stone cells in pear flesh.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号