首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   2篇
林业   2篇
农学   3篇
  2篇
综合类   6篇
农作物   5篇
园艺   9篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
赤霉素和细胞分裂素调控苹果果实早期生长发育机理的研究   总被引:24,自引:1,他引:23  
采用流式细胞术(FCM)及酶联免疫法(ELISA)从细胞学和激素生理学的角度研究了GA4/7、BA及CPPU调节苹果果实早期发育的可能机理。GA4/7(50mg/L)抑制了苹果果肉细胞分裂,未提高果实内源细胞分裂素(ZRs,iPA)含量推测它主要通过促进工而促进果实生长,BA(50mg/L)和CPPU(12.5mg/L)可以显著促进苹果幼果的细胞分裂,CPPU的细胞分裂素活性较BA高,BA和CPP  相似文献   
2.
We induced various flower morphologies in torenia (Torenia fournieri Lind.) by the application of forchlorfenuron (CPPU). Those morphologies were the combination of four basic morphological changes, the development of serrate petals, incised petals, a paracorolla, and an increased number of floral organs. These morphological changes occurred systematically depending on the floral stage at the time of CPPU application. Serrate petals were induced when CPPU was applied during the stages of corolla development, whereas application at younger stages induced petal incision. The serrate petal margin resulted from preferential proliferation of cells around the vascular bundles, whereas petal incision likely resulted from the lateral outgrowths of petal. A paracorolla was induced at the adaxial petal face when CPPU was applied between the sepal development stage and early corolla development. The paracorolla appears to have arisen from the lateral outgrowths of the stamen. The numbers of stamens, petals, and sepals increased when CPPU was applied at and before the differentiation of sex organs and the corolla. Enlargement of the floral meristem probably caused this increase. Application of N6-benzylaminopurine and zeatin did not induce these morphological changes.  相似文献   
3.
Final fruit diameter is the prime determinant of sweet cherry fruit value. Previous research has shown that mesocarp cell size accounts predominantly for variability in final fruit size, within a genotype. Our research program evaluated the potential to improve sweet cherry fruit size/weight with growth regulators to affect cell division and/or cell expansion stages. In the current study we screened 8 plant growth regulators (PGRs), including cytokinins, gibberellins, and auxins, and their combinations for their ability to increase ‘Bing’ fruit weight. Each PGR was mixed in lanolin paste and applied to fruit pedicels at 9 or 30 days after full bloom (DAFB), to coincide with estimated peak in cell division and cell expansion activity, respectively. Several cytokinins applied 30 DAFB improved fruit weight significantly (ca. +15%) with N-(2-Chloro-4-pyridyl)-N′-phenylurea (CPPU) and 6-(3-hydroxybenzylamino) purine (mt-Topolin) at 100 mg l−1 being the most effective. Gibberellins, applied alone, improved fruit size and delayed fruit maturation and exocarp coloration. GA3 at 200 mg l−1 applied at 9 DAFB was the most effective and improved final fruit weight by 15%. Fifty-six percent of the fruit from this treatment were ≥9 g compared to 15% of similar weight fruit from untreated limbs. Both GA3 and GA4/7 treatments applied 9 DAFB increased fruit radial expansion. 4-Chlorophenoxyacetic acid, a synthetic auxin, also stimulated higher fruit growth rates at stage I and stage II, and fruit color development, but did not improve final fruit size.  相似文献   
4.
This report describes in vitro shoot induction and plant regeneration from nodal segments of Balanites aegyptiaca on Murashige and Skoog (MS) medium fortified with 6-benzyladenine (BA), thidiazuron (TDZ) and kinetin (Kin) (0.5–20.0 μM). MS medium supplemented with BA (12.5 μM) was the most effective in inducing bud break and growth and also in initiating multiple shoot proliferation. However, the optimal level of TDZ supplementation to the culture medium was 5.0 μM. Shoot cultures were established by repeatedly subculturing the original nodal explants on the same medium. Highest number of shoots (11.5 ± 0.7) and shoot length (5.0 ± 0.2 cm) were achieved when cultures were subcultured on MS medium supplemented with 12.5 μM BA and 1.0 μM α-naphthalene acetic acid (NAA). The shoots regenerated from TDZ supplemented medium when subcultured to hormone free MS basal medium considerably increased the rate of shoot multiplication and shoot length by the end of fifth subculture. Rooting of the shoots was achieved on MS medium augmented with 1.0 μM indole-3-butyric acid (IBA) plus 0.5% activated charcoal followed by their transfer to half strength MS basal medium. The in vitro raised plantlets with well developed shoots and roots were successfully established in earthen pots containing garden soil and were grown in greenhouse with 70% survival rate. The results of this study provide the first successful report on in vitro direct plant regeneration of B. aegyptiaca.  相似文献   
5.
Organogenic callus induction and high frequency shoot regeneration were achieved from cotyledon explants of cucumber. About 86.2% of cotyledon explants derived from 5-day-old in vitro raised seedlings produced green, compact nodular organogenic callus in MS medium containing NAA (2.69 μM) and BA (4.44 μM) after two successive transfers at 20 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MS medium supplemented with NAA (1.34 μM), BA (8.88 μM), zeatin (0.91 μM) and l-glutamine (136.85 μM) with shoot induction frequency of 75.6%. Shoot proliferation occurred when callus with emerging shoots was transferred in the same medium at an interval of 20 days. Shoots (1.0 cm length) were excised from callus and were elongated in MS medium fortified with GA3 (1.44 μM) and BA (4.44 μM). The elongated shoots were rooted in MS medium supplemented with IBA (3.42 μM) and BA (4.44 μM). Rooted plants were acclimatized in green-house and subsequently established in soil with a survival rate of 80%. This protocol yielded an average of 35 shoots per cotyledon explant in a culture duration of 120–140 days.  相似文献   
6.
[目的]对“赤颜”草莓组培快繁技术进行研究,为其规模化生产提供保证.[方法]以“赤颜”草莓匍匐茎尖为试验材料,对适宜其增殖的主要因素:培养基种类、细胞分裂素的种类及浓度、糖源种类及浓度、光照强度进行研究.[结果] MS培养基是适合“赤颜”草莓组培苗增殖的基本培养基;细胞分裂素为BA 1.2 mg/L(附加NAA 0.10 mg/L)时植株鲜重、干重、增殖系数均达到最大值,分别为2.259g、0.221 g、12.4;30 g/L的蔗糖、1 600 lx的光照强度最适合“赤颜”草莓组培苗的增殖.[结论]适合“赤颜”草莓增殖的培养基为MS+BA 1.2 mg/L+ NAA 0.04 mg/L+蔗糖30 g/L+琼脂8 g/L,光照强度1 600 lx.  相似文献   
7.
二氢玉米素核苷组的间接酶联免疫吸附测定法   总被引:3,自引:0,他引:3  
  相似文献   
8.
Three plant-growth promoting, N2-fixing methylotrophic strains isolated from rice cultivars (Oryza sativa L.), viz, Methylobacterium sp. CBMB20, Enterobacter sp. CBMB30, Burkholderia sp. CBMB40, were selected, and their activities in promoting the early growth of rice were studied. Seeds treated with the methylotrophic strains improved seed germination, seedling vigor index (SVI), and biomass of rice seedlings. The methylotrophic population in the treated seedlings increased in the vegetative stages when compared to seeding stages. Treated seedlings showed a higher accumulation of plant hormones viz trans-zeatin riboside, isopentenyladenosine, and indole-3-acetic acid than untreated seedlings. Plant hormones were detected immunologically using the phytodetek kit. Conformational evidence suggested that cytokinins were produced by the epiphytic bacteria colonizing the plants rather than by the plants themselves. In addition, the inoculated early stage rice seedlings also exhibited a wide range of acetylene reduction activity. The results suggest the potential use of these bacteria to stimulate germination, SVI, and biomass production, which is mediated by production of plant hormone accumulation and nitrogen fixation.  相似文献   
9.
不同粒型小麦籽粒发育过程中细胞分裂素含量的变化   总被引:1,自引:0,他引:1  
为了解小麦籽粒发育过程中籽粒内细胞分裂素变化动态,给小麦品种选育和化学调控提供理论依据,对不同粒型小麦籽粒形成、灌浆过程中籽粒内细胞分裂素的变化动态及其与灌浆的关系进行了研究。结果表明,不同粒型小麦品种籽粒发育过程中细胞分裂素含量具有相似的变化趋势。在籽粒形成期,籽粒中ZR、iPA含量迅速增加,在开花期后的18~24d达到峰值,其后逐渐下降。籽粒中ZR、iPA含量峰值出现的早晚与籽粒灌浆强度增加的持续时间呈正相关。  相似文献   
10.
Leaf senescence during grain filling can reduce crop yield. We studied, under field conditions and during grain-filling, the association between leaf cytokinin levels and the onset of leaf senescence in sunflower hybrids of contrasting canopy senescence patterns (Paraiso75, stay-green [SG] and Paraiso65, fast dry down [FDD]). At crop level, dynamics of live root length density (LRLD) and green leaf area index (GLAI) were followed, while at leaf level dynamics of total chlorophyll content, trans-Zeatin content, net photosynthesis and PSII quantum yield, were followed in leaf positions 17, 20, 22 and 24. Responses of these leaf variables to exogenous cytokinin applications to leaves at position 17 were also followed. SG exhibited greater (p < 0.05) LRLD and GLAI values at anthesis. In both hybrids, LRLD began to fall before GLAI. All variables decreased earlier (p < 0.05) in FDD. Initial leaf levels of trans-Zeatin were three times higher (p < 0.05) in SG. Exogenous cytokinin applications maintained leaf-level variables. These are the first results showing associations between LRLD dynamics with the dynamics of leaf cytokinin levels and changes in indicators of leaf functionality. Also, this is the first study in which estimates are made of cytokinin thresholds below which leaf senescence begins in two hybrids of contrasting canopy senescence patterns. These advances in the understanding, at both crop and leaf levels, of the controls and consequences of SG during grain filling, a trait known to improve crop water uptake under drought and increase biomass accumulation during grain filling, provide support for breeding efforts aimed at profiting from this trait to increase crop yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号