首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
林业   1篇
  2篇
综合类   1篇
农作物   1篇
畜牧兽医   2篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2011年   1篇
  2005年   1篇
  1990年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Drip-irrigation is increasingly applied in maize (Zea mays L.) production in sub-humid region. It is critical to quantify irrigation requirements during different growth stages under diverse climatic conditions. In this study, the Hybrid-Maize model was calibrated and applied in a sub-humid Heilongjiang Province in Northeast China to estimate irrigation requirements for drip-irrigated maize during different crop physiological development stages and under diverse agro-climatic conditions. Using dimensionless scales, the whole growing season of maize was divided into diverse development stages from planting to maturity. Drip-irrigation dates and irrigation amounts in each irrigation event were simulated and summarized in 30-year simulation from 1981 to 2010. The maize harvest area of Heilongjiang Province was divided into 10 agro-climatic zones based on growing degree days, arid index, and temperature seasonality. The simulated results indicated that seasonal irrigation requirements and water stress during different growth stages were highly related to initial soil water content and distribution of seasonal precipitation. In the experimental site, the average irrigation amounts and times ranged from 48 to 150 mm with initial soil water content decreasing from 100 to 20% of the maximum soil available water. Additionally, the earliest drip-irrigation event might occur during 3- to 8-leaf stage. The water stress could occur at any growth stages of maize, even in wet years with abundant total seasonal rainfall but poor distribution. And over 50% of grain yield loss could be caused by extended water stress during the kernel setting window and grain filling period. It is estimated that more than 94% of the maize harvested area in Heilongjiang Province needs to be irrigated although the yield increase varied (0 to 109%) in diverse agro-climatic zones. Consequently, at least 14% of more maize production could be achieved through drip-irrigation systems in Heilongjiang Province compared to rainfed conditions.  相似文献   
2.
植物沙障不同种植模式对川西北沙地的恢复效应   总被引:1,自引:0,他引:1  
生物沙障被广泛地应用于沙化治理中,但是生物沙障不同种植模式下对沙化治理的相关研究较少,尤其是复合草本在高寒地区不同种植模式下的研究较为缺乏。为了明确混合草本沙障不同种植模式对高寒沙地治理效应,选择川西北沙地作为典型高寒半湿润沙地,利用燕麦、垂穗披碱草、中华羊茅作为混合草本沙障,自2014年利用行播、带播、撒播种植模式恢复高寒半湿润沙地4年,于2014年测定一年生燕麦生长状况,调查4年后地表植物群落盖度和多样性特征,并且测定土壤水分、容重、含水量、pH值、有机碳、全氮、全磷等指标,分析复合草本不同种植模式对高寒沙地恢复效应。研究结果表明:复合草本带播和撒播模式对高寒沙地恢复效果明显。一年生燕麦后期从生态系统中消失,多年生草本适应性良好。带播和撒播种植模式显著增加了地上植物盖度、物种多样性、生态优势度。带播和撒播模式也显著减小了土壤容重,增加了土壤含水量、有机碳、全氮、全磷等含量。在高寒沙化复合草本种植恢复过程中,建议将土壤容重、有机质、全氮作为衡量土壤性质变化的指标。综合地表植被和土壤理化性质变化,建议以混合草本带播和撒播种植模式作为高寒沙化治理的主要种植模式。  相似文献   
3.
Soil catenas integrate and amplify gravity transfer and differentiation processes of eluviation and illuviation in soil profiles. We quantified differences in these redistribution processes along granitic catenas across an arid to sub-humid climate gradient in Kruger National Park, South Africa. We measured soil properties in nine catenas sampled from three areas receiving annual rainfall of 470 mm (arid zone), 550 mm (semi-arid zone) and 730 mm (sub-humid zone). As rainfall increased, kaolinite replaced smectite as the dominant clay mineral in all landscape positions across the catenas. Toeslopes showed the strongest evidence of this transition with an excess of smectite in the arid catenas but complete prevalence of kaolinite in toeslopes of sub-humid catenas. The concentration and distribution of clay along the catenas were dependent on landscape position as well — soil profiles at and near the crests were clay depleted (as low as 1%) while those at the toeslopes had much more clay (up to 60%). Clay redistribution along catenas was sensitive to climate with the least amount of redistribution occurring in the dry sites and the most occurring in the wet sites. As a consequence, the sub-humid catenas had clay accumulation only in a small part of the toeslopes while the bulk of their length was represented by highly leached soils. In contrast, arid zone catenas showed little clay redistribution and semi-arid sites displayed the greatest within-catena clay redistribution and preservation. Clay movement and storage conditioned other soil properties such as CEC, base cation distribution, base saturation and pH.  相似文献   
4.
The variations of the amounts of individual high molecular weight glutenin subunits (HMW-GS), of the ratios HMW-GSy to HMW-GSx and HMW-GS to low molecular weight glutenin subunits (LMW-GS) and of protein content were evaluated for eight durum wheat cultivars in two regions using four fertilizer combinations during two successive years. All measured parameters showed significant variation with genotypes (G), environments (E) and fertilizers (F). The interaction E × G × F was highly significant for glutenin amount variation. Amongst cultivars possessing HMW-GS 20, landraces seem to better value the N-fertilizer use for the accumulation of HMW-GSy than high yielding cultivars. Both HMW-GSy to HMW-GSx and HMW-GS to LMW-GS ratios were found to be positively correlated (p < 0.05) with total protein content.  相似文献   
5.
在年均降水量632mm的黄土高原南部半湿润红油土上进行田间试验,以NR.94059、430、偃师9号、小偃6号、陕229、西农2208、矮丰3号和商188为供试材料,研究在不施氮和施氮(N.90.kg/hm2)条件下不同冬小麦品种灌浆期氮素转移的差异。结果表明,小麦氮转移量(NT)和氮转移效率(NTE)在不同品种间差异不显著,而茎鞘氮转移效率(NTES)在品种间存在显著差异(P0.05),施氮对这些指标没有显著影响。转移氮对子粒氮贡献率(NCR)在不同品种间差异显著(P0.05),而施氮对NCR没有显著影响。不同品种间NCR从大到小的顺序为NR9405、西农2208、矮丰3号、商188、偃师9号、9430、小偃6号、陕229。氮收获指数(NHI)具有显著的品种差异,NHI从大到小的顺序为陕229、9403、矮丰3号、西农2208、偃师9号、商188、NR9405、小偃6;陕229和9403的NHI超过80%,分别为81.76%和81.02%;小偃6号仅为76.62%。不同品种的氮素利用效率(NUE)存在极显著差异(P0.001),以偃师9号最高,为37.25.g/g,小偃6号最低,为29.29.g/g;施氮对NHI和NUE无显著影响。子粒含氮量与NUE间呈极显著负相关关系(r=0.918,P0.001),表明对同一个品种难以同时提高NUE和子粒含氮量。  相似文献   
6.
In the semi-arid to sub-humid north-east of Mexico, no definite agroforestry practices were in use before the Spanish conquest, but present systems and practices offer a good basis for conversion to ecologically sustainable and productive multicrop systems which incorporate trees. In the mountains and on the coastal plain of the Gulf of Mexico, sub-humid tropical tree crops are found in mixture with semi-arid, mediterranean and even temperate species. Irrigation systems are energy and labour intensive and can be improved. Of special interest for farmers without access to finance, are non-irrigated systems mostly derived from the low dry forest (matorral), which yield crops, fruit and wood for different purposes and also serve for depasturing cattle. These latter practices have high potential for development and optimization.Integrated Expert, Agroforestry, CIM, Germany F.R., GTZ Project No. 81.9008.4  相似文献   
7.
土壤微生物变化对生态恢复过程中土壤养分循环具有重要作用,但高寒半湿润沙地生态修复过程中土壤微生物及养分变化研究较为缺乏。为明确该环境下沙化生态系统的修复过程中土壤环境的变化,选用燕麦、垂穗披碱草、中华羊茅混播修复高寒半湿润沙地,并以未修复沙地为对照,测定0~10 cm和10~20 cm两土层修复4年过程中土壤微生物及土壤养分含量的变化,分析探讨土壤微生物和养分随植被修复的动态,及微生物与土壤养分变化的相关性。结果表明,随修复年限增加,土壤中主要微生物类群以细菌为主,沙地修复4年后土壤中微生物总量由8.30 nmol·g-1增加到10.58 nmol·g-1,但是细菌依然占微生物总量的50%以上,植被恢复并未改变细菌占微生物总量比例。两个土壤层土壤微生物生物量(碳、氮、磷)、多样性(细菌、真菌、放线菌、G-菌、G+菌)、土壤养分(有机质、全氮、全磷)含量均呈现先降低后增加趋势,且0~10 cm始终大于10~20 cm土层。草本修复第1年,0~10 cm和10~20 cm土层微生物及养分各组分含量显著降低(P<0.05);修复2年后,0~10 cm土层含量开始增加;到修复第3和4年,土壤微生物与土壤养分中各组分含量均恢复到未治理水平,且有机质、微生物量氮(MBN)含量显著高于未治理沙地(P<0.05)。土壤养分中各组分含量与土壤微生物生物量、微生物总量和细菌含量呈极显著的正相关关系 (P<0.01),与G+、G-菌、真菌、放线菌均呈不同程度的正相关关系。因此,在沙地进行人工草本种植能够提高土壤养分和微生物含量,对帮助高寒地区生态系统修复和稳定具有重要意义。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号