首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
畜牧兽医   6篇
  2022年   1篇
  2021年   1篇
  2016年   2篇
  2013年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 461 毫秒
1
1.
Genetic parameters for sow stayability were estimated from farrowing records of 10,295 Landrace sows and 8192 Large White sows. The record for sow stayability from parity k to parity k + 1 (k = 1, …, 6) was 0 when a sow had a farrowing record at parity k but not at parity k + 1, and 1 when a sow had both records. Heritability was estimated by using single-trait linear and threshold animal models. Genetic correlations among parities were estimated by using two-trait linear–linear and single-trait random regression linear animal models. Genetic correlations with litter traits at birth were estimated by using a two-trait linear–linear animal model. Heritability estimates by linear model analysis were low (0.065–0.119 in Landrace & 0.061–0.157 in Large White); those by threshold model analysis were higher (0.136–0.200 & 0.110–0.283). Genetic correlations among parities differed between breeds and models. Genetic correlation between sow stayability and number born alive was positive in many cases, implying that selection for number born alive does not reduce sow stayability. The results seem to be affected by decisions on culling made by farmers.  相似文献   
2.
Impact of dominance effects on sow longevity   总被引:1,自引:0,他引:1  
The purpose of the current study was to estimate variance components, especially dominance genetic variation, for overall leg action, length of productive life and sow stayability until third and fifth parity in the Finnish pig populations. The variance components were estimated in two purebred [Landrace (LR), n = 23 602 and Large White (LW), n =22 984] and crossbred (LR × LW, n = 17 440) data sets. Five different analyses were carried out for all the traits to compare the effect of sows’ inbreeding, common litter environment and parental dominance in the statistical model when determining the genetic correlations of the traits for the two purebred and crossbred populations. Estimated heritabilities for the traits ranged from 0.04 to 0.06. The estimates for the proportion of dominance variance of phenotypic variance (d2) varied between 0.01 and 0.17, and was highest in the crossbred dataset. The genetic correlations of the same traits in purebred and crossbred were all high (>0.75). Based on current results, the effect of dominance should be accounted for in the breeding value estimation of sow longevity, especially when data from crossbred animals are included in the analyses. Because dominance genetic variation for sow longevity exists that variation should be utilized through planned matings in producing sows for commercial production.  相似文献   
3.
Sow longevity is a key component for efficient and profitable pig farming; however, approximately 50% of sows are removed annually from a breeding herd. There is no consensus in the scientific literature regarding a definition for sow longevity; however, it has been suggested that it can be measured using several methods such as stayability and economic indicators such as lifetime piglets produced. Sow longevity can be improved by genetic selection; however, it is rarely included in genetic evaluations. One reason is elongated time intervals required to collect complete lifetime data. The effect of genetic parameter estimation software in handling incomplete data (censoring) and possible early indicator traits were evaluated analysing a 30% censored data set (12 725 pedigreed Landrace × Large White sows that included approximately 30% censored data) with DMU6, THRGIBBS1F90 and GIBBS2CEN. Heritability estimates were low for all the traits evaluated. The results show that the binary stayability traits benefited from being analysed with a threshold model compared to analysing with a linear model. Sires were ranked very similarly regardless if the program handled censoring when all available data were included. Accumulated born alive and stayability were good indicators for lifetime born alive traits. Number of piglets born alive within each parity could be used as an early indicator trait for sow longevity.  相似文献   
4.
Abstract

Selection for sow longevity using information from traits, which are expressed in early life and genetically highly related to longevity, is expected to be more effective than direct selection as it can overcome the disadvantage of late recording of true longevity. Our aim was to investigate the correlation between leg conformation recorded on young pigs, litter size at first parity and longevity of Danish Landrace and Yorkshire sows. Information on conformation from 116,733 Landrace and 89,963 Yorkshire pigs and information on reproduction and longevity from 27,070 Landrace and 11,895 Yorkshire sows were analyzed. All considered traits were low to moderately heritable, ranging from 0.02 to 0.41. In general, both conformation and reproduction traits were favorably genetically correlated with longevity (0.07–0.39 and 0.00–0.58, respectively). These estimates suggest a potential of improving sow longevity by selection on conformation recorded at young age and litter size at first parity.  相似文献   
5.
Variation in the genome region coding for PLAG1 has well-documented associations with skeletal growth and age at puberty in cattle. However, the influence of PLAG1 on other economically important traits such as cow stayability has not yet been explored. Here we investigate the effect of PLAG1 variation on early and later in life female fertility, as well as size and growth, in a well-phenotyped Australian Brahman herd. Yearly pregnancy and productivity records were collected from 2,839 genotyped Brahman cows and used to generate fertility, growth, and weight phenotypes. A variant on chromosome 14 in PLAG1 (NC_037341.1:g.23338890G>T, rs109815800) was previously determined to be a putative causative mutation associated with variation in cattle stature. The imputed PLAG1 genotype at this variant was isolated for each animal and the effect of PLAG1 genotype on each trait was estimated using linear modeling. Regardless of how heifer fertility was measured, there was a significant (P < 0.05) and desirable relationship between the additive effects of PLAG1 genotype and successful heifer fertility. Heifers with two copies of the alternate allele (TT) conceived earlier and had higher pregnancy and calving rates. However, the effects of PLAG1 genotype on fertility began to diminish as cows aged and did not significantly influence stayability at later ages. While there was no effect of genotype on growth, PLAG1 had a negative effect on mature cow weight (P < 0.01), where females with two copies of the alternate allele (TT) were significantly smaller than those with either one or none. Selection emphasis on improved Brahman heifer fertility will likely increase the frequency of the T allele of rs109815800, which may also increase herd profitability and long-term sustainability through improved reproductive efficiency and reduced mature cow size.  相似文献   
6.
Longevity is important in pig production with respect to both economic and ethical aspects. Direct selection for longevity might be ineffective because ‘true’ longevity can only be recorded when a sow has been culled or died. Thus, indirect selection for longevity using information from other traits that can be recorded early in life and are genetically correlated with longevity might be an alternative. Leg conformation has been included in many breeding schemes for a number of years. However, proving that leg conformation traits are good early indicators for longevity still remains. Our aim was to study genetic associations between leg conformation traits of young (5 months; 100 kg) Swedish Yorkshire pigs in nucleus herds and longevity traits of sows in nucleus and multiplier herds. Data included 97 533 animals with information on conformation (Movement and Overall score) recorded at performance testing and 26 962 sows with information on longevity. The longevity traits were as follows: stayability from 1st to 2nd parity, lifetime number of litters and lifetime number of born alive piglets. Genetic analyses were performed with both linear models using REML and linear‐threshold models using Bayesian methods. Heritabilities estimated using the Bayesian method were higher than those estimated using REML, ranging from 0.10 to 0.24 and 0.07 to 0.20, respectively. All estimated genetic correlations between conformation and longevity traits were significant and favourable. Heritabilities and genetic correlations between conformation and longevity indicate that selection on leg conformation should improve sow longevity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号