首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   14篇
  国内免费   1篇
畜牧兽医   108篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   19篇
  2017年   13篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   10篇
  2012年   8篇
  2011年   7篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有108条查询结果,搜索用时 31 毫秒
1.
AIMS: To determine the pharmacokinetics, and anaesthetic and sedative effects of alfaxalone after I/V and I/M administration to cats.

METHODS: Six European shorthair cats, three males and three females, with a mean weight of 4.21 (SD 0.53) kg and aged 3.8 (SD 0.9) years were enrolled in this crossover, two–treatment, two-period study. Alfaxalone at a dose of 5?mg/kg was administered either I/V or I/M. Blood samples were collected between 2–480 minutes after drug administration and analysed for concentrations of alfaxalone by HPLC. The plasma concentration-time curves were analysed by non-compartmental analysis. Sedation scores were evaluated between 5–120 minutes after drug administration using a numerical rating scale (from 0–18). Intervals from drug administration to sit, sternal and lateral recumbency during the induction phase, and to head-lift, sternal recumbency and standing position during recovery were recorded.

RESULTS: The mean half-life and mean residence time of alfaxalone were longer after I/M (1.28 (SD 0.21) and 2.09 (SD 0.36) hours, respectively) than after I/V (0.49 (SD 0.07) and 0.66 (SD 0.16) hours, respectively) administration (p<0.05). Bioavailability after I/M injection of alfaxalone was 94.7 (SD 19.8)%. The mean intervals to sternal and lateral recumbency were longer in the I/M (3.73 (SD 1.99) and 6.12 (SD 0.90) minutes, respectively) compared to I/V (0 minutes for all animals) treated cats (p<0.01). Sedation scores indicative of general anaesthesia (scores >15) were recorded from 5–15 minutes after I/V administration and deep sedation (scores 11–15) at 20 and 30 minutes. Deep sedation was observed from 10–45 minutes after I/M administration. One cat from each group showed hyperkinesia during recovery, and the remainder had an uneventful recovery.

CONCLUSIONS AND CLINICAL RELEVANCE: Alfaxalone administered I/V in cats provides rapid and smooth induction of anaesthesia. After I/M administration, a longer exposure to the drug and an extended half life were obtained compared to I/V administration. Therefore I/M administration of alfaxalone could be a reliable, suitable and easy route in cats, taking into account that alfaxalone has a slower onset of sedation than when given I/V and achieves deep sedation rather than general anaesthesia.  相似文献   
2.
ObjectiveTo quantify induction time, reliability, physiological effects, recovery quality and dart volume of a novel formulation of alfaxalone (40 mg mL?1) used in combination with medetomidine and azaperone for the capture and handling of wild bighorn sheep.Study designProspective clinical study.AnimalsA total of 23 wild bighorn sheep (Ovis canadensis) in Sheep River Provincial Park, AB, Canada.MethodsFree-ranging bighorn sheep were immobilized using medetomidine, azaperone and alfaxalone delivered with a remote delivery system. Arterial blood was collected for measurement of blood gases, physiologic variables (temperature, heart and respiratory rates) were recorded and induction and recovery length and quality were scored.ResultsData from 20 animals were included. Administered dose rates were alfaxalone (0.99 ± 0.20 mg kg?1; 40 mg mL?1), azaperone (0.2 ± 0.04 mg kg?1; 10 mg mL?1) and medetomidine (0.16 ± 0.03 mg kg?1; 30 mg mL?1). The mean drug volume injected was 1.51 mL. The median (range) induction time was 7.7 (5.8–9.7) minutes, and recovery was qualitatively smooth.Conclusions and clinical relevanceAn increased concentration formulation of alfaxalone was administered in combination with medetomidine and azaperone, and resulted in appropriate anesthesia for the capture and handling of bighorn sheep. The dart volume was small, with potential for reducing capture-related morbidity.  相似文献   
3.
ObjectiveTo compare the effect of propofol, alfaxalone and ketamine on intraocular pressure (IOP) in cats.Study designProspective, masked, randomized clinical trial.AnimalsA total of 43 ophthalmologically normal cats scheduled to undergo general anesthesia for various procedures.MethodsFollowing baseline IOP measurements using applanation tonometry, anesthesia was induced with propofol (n = 15), alfaxalone (n = 14) or ketamine (n = 14) administered intravenously to effect. Then, midazolam (0.3 mg kg?1) was administered intravenously and endotracheal intubation was performed without application of topical anesthesia. The IOP was measured following each intervention. Data was analyzed using one-way anova and repeated-measures mixed design with post hoc analysis. A p-value <0.05 was considered significant.ResultsMean ± standard error IOP at baseline was not different among groups (propofol, 18 ± 0.6; alfaxalone, 18 ± 0.7; ketamine, 17 ± 0.5 mmHg). Following induction of anesthesia, IOP increased significantly compared with baseline in the propofol (20 ± 0.7 mmHg), but not in the alfaxalone (19 ± 0.8 mmHg) or ketamine (16 ± 0.7 mmHg) groups. Midazolam administration resulted in significant decrease from the previous measurement in the alfaxalone group (16 ± 0.7 mmHg), but not in the propofol group (19 ± 0.7 mmHg) or the ketamine (16 ± 0.8 mmHg) group. A further decrease was measured after intubation in the alfaxalone group (15 ± 0.9 mmHg).Conclusions and clinical relevancePropofol should be used with caution in cats predisposed to perforation or glaucoma, as any increase in IOP should be avoided.  相似文献   
4.
The pharmacological effects of the anesthetic alfaxalone were evaluated after intramuscular (IM) administration to 6 healthy beagle dogs. The dogs received three IM doses each of alfaxalone at increasing dose rates of 5 mg/kg (IM5), 7.5 mg/kg (IM7.5) and 10 mg/kg (IM10) every other day. Anesthetic effect was subjectively evaluated by using an ordinal scoring system to determine the degree of neuro-depression and the quality of anesthetic induction and recovery from anesthesia. Cardiorespiratory variables were measured using noninvasive methods. Alfaxalone administered IM produced dose-dependent neuro-depression and lateral recumbency (i.e., 36 ± 28 min, 87 ± 26 min and 115 ± 29 min after the IM5, IM7.5 and IM10 treatments, respectively). The endotracheal tube was tolerated in all dogs for 46 ± 20 and 58 ± 21 min after the IM7.5 and IM10 treatments, respectively. It was not possible to place endotracheal tubes in 5 of the 6 dogs after the IM5 treatment. Most cardiorespiratory variables remained within clinically acceptable ranges, but hypoxemia was observed by pulse oximetry for 5 to 10 min in 2 dogs receiving the IM10 treatment. Dose-dependent decreases in rectal temperature, respiratory rate and arterial blood pressure also occurred. The quality of recovery was considered satisfactory in all dogs receiving each treatment; all the dog exhibited transient muscular tremors and staggering gait. In conclusion, IM alfaxalone produced a dose-dependent anesthetic effect with relatively mild cardiorespiratory depression in dogs. However, hypoxemia may occur at higher IM doses of alfaxalone.  相似文献   
5.
Objective To estimate mean Schirmer tear test (STT) and intraocular pressure (IOP) values in healthy koalas both conscious and anesthetized. Methods Data were gathered from koalas in Victoria, Australia. Conscious examinations were performed on captive koalas. Free‐ranging (wild) koalas were examined under anesthesia. Anesthesia was induced using alfaxalone, and animals were maintained on oxygen and isoflurane if required. All animals were healthy and had no surface ocular pathology detectable during slit lamp biomicroscopy. STT I tests were performed using commercial STT test strips placed in the lower fornix for 1 min. IOP was measured using an applanation tonometer after topical anesthesia. The higher value of the two eyes for both STT and IOP was analyzed. STT was measured in 53 koalas (34 conscious, 19 anesthetized) and IOP was measured in 43 koalas (30 conscious, 13 anesthetized). A two‐sample t‐test was used to compare means. A P‐value <0.05 was regarded as significant. Mean ± SD is presented. Results The mean higher STT in conscious koalas was 10.3 ± 3.6 mm wetting/min and in anesthetized koalas it decreased to 3.8 ± 4.0 mm wetting/min (P < 0.0001). The mean higher IOP in conscious koalas was 15.3 ± 5.1 mmHg, and in anesthetized koalas it was 13.8 ± 3.4 mmHg (P = 0.32). There was no effect of sex on either STT or IOP. Conclusions The mean and SD of STT and IOP values for koalas both conscious and anesthetized were reported. The mean STT was significantly reduced by alfaxalone anesthesia.  相似文献   
6.
7.
ObjectiveTo compare the anaesthetic and cardiopulmonary effects of alfaxalone with propofol when used for total intravenous anaesthesia (TIVA) during ovariohysterectomy in dogs.Study designA prospective non-blinded randomized clinical study.AnimalsFourteen healthy female crossbred bitches, aged 0.5–5 years and weight 16–42 kg.MethodsDogs were premedicated with acepromazine 0.01 mg kg?1 and morphine 0.4 mg kg?1. Anaesthesia was induced and maintained with either propofol or alfaxalone to effect for tracheal intubation followed by an infusion of the same agent. Dogs breathed spontaneously via a ‘circle’ circuit, with oxygen supplementation. Cardiopulmonary parameters (respiratory and heart rates, end-tidal carbon dioxide, tidal volume, and invasive blood pressures) were measured continuously and recorded at intervals related to the surgical procedure. Arterial blood samples were analysed for blood gas values. Quality of induction and recovery, and recovery times were determined. Non-parametric data were tested for significant differences between groups using the Mann–Whitney U-test and repeatedly measured data (normally distributed) for significant differences between and within groups by anova.ResultsBoth propofol and alphaxalone injection and subsequent infusions resulted in smooth, rapid induction and satisfactory maintenance of anaesthesia. Doses for induction (mean ± SD) were 5.8 ± 0.30 and 1.9 ± 0.07 mg kg?1 and for the CRIs, 0.37 ± 0.09 and 0.11 ± 0.01 mg kg?1 per minute for propofol and alfaxalone respectively. Median (IQR) recovery times were to sternal 45 (33–69) and 60 (46–61) and to standing 74 (69–76) and 90 (85–107) for propofol and alphaxalone respectively. Recovery quality was good. Cardiopulmonary effects did not differ between groups. Hypoventilation occurred in both groups.Conclusions and clinical relevanceFollowing premedication with acepromazine and morphine, both propofol and alphaxalone produce good quality anaesthesia adequate for ovariohysterectomy. Hypoventilation occurs suggesting a need for ventilatory support during prolonged infusion periods with either anaesthetic agent.  相似文献   
8.

Objective

To compare the effect of propofol and alfaxalone on laryngeal motion under a light plane of anaesthesia in nonbrachycephalic and brachycephalic dogs anaesthetized for nonemergency procedures.

Study design

Prospective, randomized clinical trial.

Animals

A total of 48 client-owned dogs (24 nonbrachycephalic and 24 brachycephalic).

Methods

A standardized premedication of methadone (0.2 mg kg?1) and acepromazine (0.01 mg kg?1) was administered intramuscularly. Dogs were randomly assigned to be induced with increments of propofol (1–4 mg kg?1) or alfaxalone (0.5–2 mg kg?1). Laryngeal assessment was performed under a light plane of anaesthesia by a surgeon (GTH) who was unaware of the induction protocol. Laryngeal movement was assessed as either being present when abduction of the laryngeal cartilages upon inspiration was identified, or absent when abduction was not recognized. Simultaneously, a 60-second video was recorded. The same surgeon (GTH) and an additional surgeon (NK) re-evaluated the videos 1 month later. Categorical comparisons were studied using Chi square and Fisher’s exact test where appropriate. Pairwise evaluation of agreement between scorers was undertaken with the kappa statistic (κ).

Results

There were no significant differences (p > 0.05) identified between the presence or absence of laryngeal motion between dogs administered propofol or alfaxalone, as well as when analysing nonbrachycephalic and brachycephalic dogs separately. The majority of dogs (>75%) maintained some degree of laryngeal motion with both protocols. Agreement between assessors was excellent (κ = 0.822).

Conclusions

Alfaxalone maintained laryngeal motion similarly to propofol in nonbrachycephalic and brachycephalic dogs.

Clinical relevance

Both agents would appear appropriate for allowing assessment of laryngeal motion in nonbrachycephalic and brachycephalic dogs. The assessment technique of subjective evaluation of laryngeal motion via peroral laryngoscopy under a light plane of anaesthesia produced consistent results amongst assessors, regardless of the induction agent used.  相似文献   
9.

Objective

To determine whether intratesticular injection of an alfaxalone–lidocaine combination can induce anesthesia and provide a rapid recovery in piglets undergoing surgical castration.

Study design

Randomized experimental study.

Animals

A group of 30 male piglets, aged 2–10 days, weighing 1.3–4.6 kg.

Methods

Animals were randomly divided into three equal groups for intratesticular administration of alfaxalone + lidocaine: high dose (group HD; 8 mg kg–1 + 2.5 mg kg–1), medium dose (group MD; 6 mg kg?1 + 2 mg kg?1) and low dose (group LD; 4 mg kg?1 + 1.5 mg kg?1). Induction and recovery times, movement and vocalization were recorded. Pulse rate (PR), oxygen saturation, respiratory rate (fR), rectal temperature, blood pressure and end-tidal carbon dioxide were recorded until recovery.

Results

Induction time did not differ significantly among groups (p = 0.19); mean time of 2.2, 3.3 and 3.7 minutes for HD, MD and LD, respectively. Recovery time to sternal recumbency was significantly faster in LD compared with HD and MD (p = 0.005). Time to standing was mean 34.1, 31.6 and 29.6 minutes for HD, MD and LD, respectively (p = 0.58). Incidences of movement and vocalization during the castration procedure were decreased in HD and MD compared with LD, but were not statistically different. There were no differences in the physiologic data among the groups except for PR, which decreased in all three groups (p < 0.05), and fR, which increased in MD and LD (p < 0.05).

Conclusions and clinical relevance

The alfaxalone–lidocaine combinations investigated in this study induced deep sedation in all piglets. Physiologic data remained within clinically acceptable ranges, suggesting that this drug combination by intratesticular injection prior to castration in neonatal piglets is well tolerated. The authors recommend the alfaxalone (6 mg kg?1) + lidocaine (2 mg kg?1) dose.  相似文献   
10.

Objective

To determine the effective plasma alfaxalone concentration for the production of immobility in cats.

Study design

Prospective up-and-down study.

Animals

Sixteen 1–2 year old male castrated research cats.

Methods

Cats were instrumented with catheters in a jugular and a medial saphenous vein. Alfaxalone was administered via the medial saphenous catheter, using a target-controlled infusion system. The infusion lasted for approximately 32 minutes. A noxious stimulus (tail clamp) was applied 30 minutes after starting the alfaxalone infusion, until the cat moved or 60 seconds had elapsed, whichever occurred first. The target alfaxalone concentration was set at 5 mg L?1 in the first cat and increased or decreased by 1 mg L?1 in subsequent cats, if the previous cat had moved or not moved in response to stimulation, respectively. This was continued until six independent crossovers (different responses in pairs of subsequent cats) had been observed. Blood samples were collected before alfaxalone administration, and 15 and 31 minutes after starting the administration, for the determination of plasma alfaxalone concentration using liquid chromatography/tandem mass spectrometry. The alfaxalone concentration yielding a probability of immobility in 50% (EC50), 95% (EC95) and 99% (EC99) of the population, and their respective 95% Wald confidence intervals were calculated.

Results

The EC50, EC95 and EC99 for alfaxalone-induced immobility were 3.7 (2.4–4.9), 6.2 (4.7–) and 7.6 (5.5–) mg L?1, respectively.

Conclusions and clinical relevance

The effective plasma alfaxalone concentration for immobility in cats was determined. This value will help in the design of pharmacokinetic-based dosing regimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号