首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   39篇
  国内免费   6篇
农学   3篇
基础科学   10篇
  8篇
综合类   125篇
农作物   1篇
水产渔业   307篇
畜牧兽医   18篇
园艺   1篇
  2024年   4篇
  2023年   5篇
  2022年   5篇
  2021年   17篇
  2020年   22篇
  2019年   18篇
  2018年   18篇
  2017年   29篇
  2016年   24篇
  2015年   24篇
  2014年   19篇
  2013年   38篇
  2012年   18篇
  2011年   17篇
  2010年   19篇
  2009年   37篇
  2008年   33篇
  2007年   18篇
  2006年   29篇
  2005年   16篇
  2004年   15篇
  2003年   14篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
排序方式: 共有473条查询结果,搜索用时 31 毫秒
1.
A jet fish pump with a throat of ø60 mm was designed to study its performance in the transport of different fish species and the physiological changes in fish thereafter. Experiments were conducted to investigate the fish transport rate and energy required to transport each ton of fish when transporting Carassius auratus, commonly known as the Chinese goldfish, Megalobrama amblycephala, or Wuchang bream, and Ctenopharyngodon idella, the grass carp. Fish were examined for external injuries as well as for several important enzymes and hormones which are indicators of tissue injury and stress. The results showed that the transport rate for all three species of fish rose dramatically with an increase in the primary stream rate. In this experiment, the transport rates of C. auratus, M. amblycephala and C. idella reached 2357 ± 37.2 kg  h−1, 2888 ± 41.6 kg  h−1, and 2060 ± 40.2 kg  h−1, respectively. However, both injury rate and energy required to transport each ton of fish increased no matter whether the primary stream rate was too low or too high. Considering both transport rate and injury rate, the mean primary stream rate of 80 m3  h−1 was determined to be the optimal operating condition in this experiment. Fish were stressed and most likely some of their organs were damaged. However, most physiological indexes almost fully recovered after several hours.  相似文献   
2.
Currently, very few aquaculture operations are employing airlift pump technology for water recirculation, aeration, and waste removal. This is likely due to the poor design and lower efficiency of traditional airlift design, the limited amount of research effort that has been invested in improving performance capabilities of air lift pumps and the general lack of awareness of the industry about the inherent advantages of airlift systems. A new efficient airlift pump is hydrodynamically designed by incorporating the Volume of Fluid (VOF) multi-phase model along with the K-ε turbulence model utilizing Computational Fluid Dynamics (CFD) tools. The pump is designed to offer a substantial reduction in total energy usage as well as an improved quality of the culture products in order to make it attractive to aquaculture industry. In this study, both numerical and experimental investigations were carried out for airlift systems operating under two different submergence ratios of 50% and 90% in a lab setting using 2.54 cm diameter pumps. Also, the performance of a large-scale pumps of 10.16 cm diameters were also tested in an aquaculture raceway to determine its effect on the operation. The numerical results were found to be in agreement with the experiments within ±20% which is considered very reasonable for multiphase flow analysis. The present study was found to present a great tool for modelling the airlift pump performance, and potentially proposing new designs.  相似文献   
3.
Dissolved oxygen (DO) is a key ecological factor to measure the quality of water in the aquaculture. As the pond water body is affected by the breeding environment, the spatial distribution of DO shows a certain law in the entire pond. Therefore, to simulate the distribution of DO in aquaculture waters and grasp the temporal and spatial variation of DO is the key to achieving precise regulation of DO. For this purpose, this paper proposed a method for simulating the temporal and spatial distribution of DO in pond culture based on a sliding window-temporal convolutional network together with trend surface analysis (SW-TCN-TSA). This paper first utilized SW to construct DO data sets with different prediction durations, and then used the improved TCN model to realize one-dimensional time series prediction for DO at single monitoring point. Based on the prediction results of DO, a TSA method was performed on the predicted values of DO at the extreme moments of all discrete monitoring points, so as to realize the simulation of the temporal and spatial distribution of DO in the pond. Experimental results show that the SW-TCN model has better prediction performance for one-dimensional time series prediction of DO. Compared with traditional deep networks, such as CNN, GRU, LSTM, CNN-GRU and CNN-LSTM, the values of evaluation indicators (MSE, MAE and RMSE) have been greatly improved. In the process of trend surface fitting, all fitting R2 of DO at different water depths are higher than 0.9, indicating that the TSA can accurately reflect the temporal and spatial distribution of DO. This method can provide a basis for the prediction and early warning of DO in the three-dimensional space of the pond and has high practicability in aquaculture.  相似文献   
4.
The net is regarded as the most critical component in marine aquaculture facilities as it is the only barrier which protects the environment from fish escapes. Accurate predictions of the net cage deformation and drag force on the nets are needed, both for ensuring fish welfare and for dimensioning of the mooring system. Thus, an appropriate hydrodynamic model is essential. In practice, two types of hydrodynamic force models, i.e., the Morison type and the Screen type, are commonly used to calculate the hydrodynamic forces on nets. Application of the models depends on the underlying structural model and the availability of data. A systematic review of hydrodynamic models is therefore undertaken to compare the models and various parameterisations, in aid of model selection during the design. In this study, eleven commonly used hydrodynamic models, i.e., five Morison models and six Screen models, are reviewed comprehensively, and implemented into a general finite element (FE) solver for dynamic simulations. Sensitivity studies on different current velocities, inflow angles and solidities of the nets are carried out. Moreover, different wake effects are also considered in numerical simulations. The numerical results from different models are compared against existing experimental data under pure current conditions. Suggestions for selection of suitable hydrodynamic models are provided, based on the model comparison.  相似文献   
5.
This work proposes a method for the statistical monitoring of the weekly weight of shrimp in a fish farm. The design of control charts for shrimp growth presents several challenges, the main ones being the presence of trend and autocorrelation. Several control charts are proposed, the most efficient being a chart based on the residuals of a second order autoregression whose parameters vary with the week. A control chart with less computational complexity is also provided. It is simply based on growth rates and works well at detecting negative weight changes. Real data from a large shrimp farm has been used for both the design and the evaluation.  相似文献   
6.
The design of aquaculture systems requires an understanding of the drag forces on cultivated kelp. This study measured the drag on line segments of cultivated Saccharina latissima in a towing tank. The drag on segments of farm line with full kelp bundles and with stipes alone (fronds removed) was measured at tow speeds of 0.10 to 0.50 m/s. The drag on individual fronds cut from the line was also measured. Video images were collected to evaluate the plant reconfiguration. Both kelp blades and stipes contributed to the total drag force on the line bundle. Within the velocity range of our experiments, the kelp blades were essentially horizontal. However, the pronation of kelp stipes increased as flow velocity increased. The reconfiguration of kelp stipes was observed to decrease the vertical extent of the kelp bundle. Due to this reconfiguration, the measured force, F, increased with velocity, U, at a rate slower than quadratic, and was consistent with scaling laws derived for reconfiguration. Specifically, FUα with α=1.35±0.17.  相似文献   
7.
The venturi aeration is an effective practice to increase the dissolved oxygen accessibility in the water bodies. This study aims to optimize the various geometrical parameters of the venturi aeration system. A non-dimensional technique was applied to find the optimum performance of various geometric parameters i.e. throat lengths (tl), number of air holes (N), and converging and diverging angles (α and β). These experiments have been carried out using 1124 L capacity of tank having dimensions of 105 cm long, 105 cm wide and 102 cm deep. The experiments were conducted at a constant flow velocity of water (1.096 m/s) with varying throat length (tl = 20–100 mm keeping 20 mm as interval between two consecutive length), number of air holes (N = 1–17 at an equal hole to hole distance of 5 mm between them), and converging and diverging angles (α and β = 10°, 15°, 20° and 25°). Multiple non-linear regression equations were also developed from the linear relation with the dependent variable (Non-dimensional form of standard aeration efficiency, NDSAE) and independent variables (tl and N). With the geometrically optimized venturi aerator the optimum performance was found for tl =100 mm, N = 17, and α and β = 15°. The maximum value of standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) obtained was 0.0216 kgO2/h and 0.611 kgO2/kWh respectively. From the non-dimensional study, it was found that the NDSAE is the function Reynolds number (Re) and Froude number (Fr). The simulation equations were developed on the basis of Re and Fr for NDSAE, and subjected to 7.378 × 10−6 < Re < 3.689 × 10-5 and 0.163 < Fr < 0.817, respectively.  相似文献   
8.
病原检测基因芯片应用及在水产病害检测的前景   总被引:6,自引:0,他引:6  
许拉  黄健  杨冰 《海洋水产研究》2008,29(1):109-114
基因芯片技术是近年来迅速发展起来的一项新技术,已成为国内外研究的热点。作为生物芯片技术发展中最完备的一个分支,基因芯片以其高通量、高灵敏性、高特异性的特点,在细菌、病毒、真菌等病原检测和鉴定方面发挥着越来越重要的作用。本文介绍了基因芯片的原理和作为检测手段的优越性,并综述了基因芯片技术在细菌和病毒检测方面的应用,分析了现有水产动物病原检测技术,提出了在现有水产动物病原生物信息学的基础上,研发水产养殖动物病害诊断基因芯片的策略。  相似文献   
9.
Wild caught post-pueruli, year one and year two post settlement juvenile western rock lobster, Panulirus cygnus, were held at ambient temperatures (15.6 °C to 23.1 °C; mean 19.0 ± 0.07 °C) or at 23 °C, and fed the same ration of a formulated pellet diet either once per night, or 3 times per night, over 12 months, to determine whether elevated temperatures and multiple feeds per night would stimulate growth through increased metabolism and feed utilisation without significant negative impacts on survival. Survival of post-pueruli (mean 63%) did not differ between ambient and 23 °C. Survival of year 1 and 2 juveniles was higher at ambient temperatures (p < 0.01 ambient: year 1 juveniles, 68%; year 2 juveniles, 88%; 23 °C: 57% and 74%, respectively). Feeding frequency did not affect survival of post-pueruli and year 2 juveniles (mean 63%, 81% respectively), but survival was 9% higher for year 1 juveniles fed three times per night (58% versus 67%; p < 0.01). All lobsters grew faster at 23 °C than at ambient temperatures (p < 0.05), with the growth of post-pueruli almost doubled at 23 °C (weight gain at 23 °C versus ambient: post-pueruli, 18 438 % versus 9 915 %; year 1 juveniles 259% versus 165%; year 2 juveniles 23% versus 21%). Feed frequency did not influence the growth of year 1 and 2 juveniles. However, there was an interaction effect of temperature and feed frequency on post-pueruli where weight and carapace length were significantly higher at ambient temperatures when post-pueruli were fed three times a day, whereas at 23 °C weight and carapace length were significantly greater when fed once per day (p < 0.05). Feed intake (g pellet dry matter lobster− 1 day− 1) of pellet was higher at 23 °C for all lobsters (p < 0.05), but was the same between lobsters fed 3 times per night versus once per night. This study has shown that increasing temperatures to 23 °C significantly improved the growth of P. cygnus post-pueruli without any adverse effects on survival. The faster growth rates exhibited by year 1 and 2 juveniles at 23 °C may potentially offset their lower survival by significantly reducing culture period. There is no benefit of feeding P. cygnus multiple times at night in terms of growth and survival. The implications for P. cygnus culture are that temperatures should be maintained close to 23 °C during the entire growout period, with due care taken to minimise mortalities through adequate provision of food and shelter. Feeding P. cygnus once daily to excess just prior to dusk to co-incide with nocturnal feeding behaviour is recommended.  相似文献   
10.
为探讨填料生物膜在养殖尾水处理中对水体氮循环的影响机制,采用16S rRNA基因扩增子测序和宏基因组测序技术,对填料生物膜、水体细菌的群落结构及其与氮循环相关的功能基因丰度差异特征进行了研究。结果显示,填料生物膜微生物主要参与氮代谢活动。在属水平上,Pseudomonas、Spirochaeta、Opitutus和Syntrophus是填料生物膜氮素转化过程的重要功能微生物类群。与水体相比,填料生物膜的碳代谢活动能力较强(P<0.05);填料生物膜上固氮功能基因nifH、硝化功能基因hao、反硝化和异化硝酸盐功能基因napA、nirS、norB、norC、nrfA、nirB和氮代谢调控基因ntrC及其相应的关键酶均显著高于周围水体(P<0.05),且对含氮污染物有显著去除效果。研究表明,养殖尾水处理系统内复合填料生物膜具有比周围水环境更强的氮周转能力,主要通过关键功能物种介导的固氮和反硝化作用实现养殖尾水氮素的转化和迁移。研究结果作为野外实验证据,可为复合填料生物膜系统在水产养殖尾水治理中的应用提供理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号