首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
畜牧兽医   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
The aims of the present study were to determine whether salsolinol (SAL), a dopamine-related compound, is present in the bovine posterior pituitary (PP) gland, and to clarify the effect of SAL on the secretion of prolactin (PRL) in ruminants. SAL was detected in extract of bovine PP gland using high-pressure liquid chromatography with electrochemical detection (HPLC-EC). A single intravenous (i.v.) injection of SAL (5 and 10mg/kg body weight) significantly and dose-dependently stimulated the release of PRL in goats (P<0.05). Plasma PRL levels reached a peak 10min after the injection, then gradually returned to basal values in 60-80min. The PRL-releasing pattern was similar to that in response to sulpiride (a dopamine receptor antagonist). The intracerebroventricular (i.c.v.) injection of 1mg of SAL had no significant effect on the release of PRL in calves, however, 5mg significantly stimulated the release (P<0.05) with peak values reached 30-40min after the injection. Moreover, SAL significantly stimulated the release of PRL from cultured bovine anterior pituitary cells at doses of 10(-6) and 10(-5)M, compared to control cells (P<0.05). Taken together, our data clearly show that SAL is present in extract of the PP gland of ruminants, and has PRL-releasing activity both in vivo and in vitro. Therefore, this endogenous compound is a strong candidate for the factor having PRL-releasing activity that has been previously detected in extract of the bovine PP gland.  相似文献   
2.
The secretion of prolactin (PRL) is stimulated by thyrotropin-releasing hormone (TRH), and inhibited by dopamine (DA). However, we have recently demonstrated that salsolinol (SAL), a DA-derived endogenous compound, is able to stimulate the release of PRL in ruminants. The aims of the present study were to compare the characteristics of the PRL-releasing response to SAL and TRH, and examine the relation between the effects that SAL and DA exert on the secretion of PRL in ruminants in vivo and in vitro. Three consecutive intravenous (i.v.) injections of SAL (5 mg/kg body weight (b.w.): 19.2 μmol/kg b.w.) or TRH (1 μg/kg b.w.: 2.8 nmol/kg b.w.) at 2-h intervals increased plasma PRL levels after each injection in goats (P < 0.05); however, the responses to SAL were different from those to TRH. There were no significant differences in each peak value between the groups. The rate of decrease in PRL levels following the peak was attenuated in SAL-treated compare to TRH-treated animals (P < 0.05). PRL-releasing responses to SAL were similar to those to sulpiride (a DA receptor antagonist, 0.1 mg/kg b.w.: 293.3 nmol/kg b.w.). In cultured bovine anterior pituitary (AP) cells, TRH (10−8 M) significantly increased the release of PRL following both 15- and 30-min incubation periods (P < 0.05), but SAL (10−6 M) did not increase the release during the same periods. DA (10−6 M) completely blocked the TRH-induced release of PRL for a 2-h incubation period in the AP cells (P < 0.05). Sulpiride (10−6 M) reversed this inhibitory effect but SAL (10−6 M) did not have any influence on the action of DA. These results show that the mechanism(s) by which SAL releases PRL is different from the mechanism of action of TRH. Furthermore, they also show that the secretion of PRL is under the inhibitory control of DA, and SAL does not antagonize the DA receptor's action.  相似文献   
3.
We have recently demonstrated that salsolinol (SAL), a dopamine (DA)-derived compound, is present in the posterior pituitary gland and is able to stimulate the release of prolactin (PRL) in ruminants. The aim of the present study was to clarify the effect that the interaction of SAL with thyrotropin-releasing hormone (TRH) or DA has on the secretion of PRL in ruminants. A single intravenous (i.v.) injection of SAL (5mg/kg body weight (b.w.)), TRH (1microg/kg b.w.), and SAL plus TRH significantly stimulated the release of PRL in goats (P<0.05). The cumulative response curve (area under the curve: AUC) during 120min was 1.53 and 1.47 times greater after the injection of SAL plus TRH than either SAL or TRH alone, respectively (P<0.05). A single i.v. injection of sulpiride (a DA receptor antagonist, 0.1mg/kg b.w.), sulpiride plus SAL (5mg/kg b.w.), and sulpiride plus TRH (1microg/kg b.w.) significantly stimulated the release of PRL in goats (P<0.05). The AUC of PRL during 120min was 2.12 and 1.78 times greater after the injection of sulpiride plus TRH than either sulpiride alone or sulpiride plus SAL, respectively (P<0.05). In cultured bovine anterior pituitary (AP) cells, SAL (10(-6)M), TRH (10(-8)M), and SAL plus TRH significantly increased the release of PRL (P<0.05), but the additive effect of SAL and TRH detected in vivo was not observed in vitro. In contrast, DA (10(-6)M) inhibited the TRH-, as well as SAL-induced PRL release in vitro. All together, these results clearly show that SAL can stimulate the release of PRL in ruminants. Furthermore, they also demonstrate that the additive effect of SAL and TRH on the release of PRL detected in vivo may not be mediated at the level of the AP, but that DA can overcome their releasing activity both in vivo and in vitro, confirming the dominant role of DA in the inhibitory regulation of PRL secretion in ruminants.  相似文献   
4.
The aims of the present study were to clarify the effect of salsolinol (SAL), a dopamine (DA)-derived endogenous compound, on the secretion of prolactin (PRL) in cattle. The experiments were performed from April to June using calves and cows. A single intravenous (i.v.) injection of SAL (5 mg/kg body weight [BW]) or sulpiride (a DA receptor antagonist, 0.1 mg/kg BW) significantly stimulated the release of PRL in male and female calves (P < 0.05), though the response to SAL was smaller than that to sulpiride. The secretory pattern of PRL in response to SAL or sulpiride in female calves resembled that in male calves. A single i.v. injection of SAL or sulpiride significantly stimulated the release of PRL in cows (P < 0.05). There was no significant difference in the PRL-releasing response between the SAL- and sulpiride-injected groups in cows. A single intracerebroventricular injection of SAL (10 mg/head) also significantly stimulated the release of PRL in castrated calves (P < 0.05). These results show that SAL is involved in the regulatory process for the secretion of PRL, not only in male and female calves, but also in cows. The results also suggest that the potency of the PRL-releasing response to SAL differs with the physiological status of cattle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号