首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
畜牧兽医   3篇
  2013年   2篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 265 毫秒
1
1.
Our primary objective of this experiment was to evaluate potential genetic differences between two diverse Bos taurus breeds [Angus (AG) and Romosinuano (RO)] in response to an endotoxin challenge. Eighteen steers (n = 9 steers/breed; 299.4 ± 5.2 kg BW) were acclimated to environmentally controlled chambers maintained at thermoneutrality (19.7 °C) and then fitted with indwelling jugular catheters and rectal temperature (RT) recording devices 1 d before the endotoxin challenge. The next day, blood samples were collected at 30-min intervals from −2 to 8 h, and RT was measured continuously at 1-min intervals throughout the study. At time 0, all steers received an intravenous bolus injection of lipopolysaccharide (LPS; 2.5 μg/kg BW). Serum samples were stored at −80 °C until analyzed for cortisol, proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and interferon gamma (IFN-γ)], and acute phase proteins (serum amyloid A, acid soluble protein, ceruloplasmin, and α-acid glycoprotein). Rectal temperatures increased in both breeds within 1 h after LPS, with RO producing a greater increase in RT than AG steers (P < 0.001). Serum cortisol and TNF-α increased (P < 0.01) in both breeds within 1 h after the LPS challenge. For cortisol, an overall breed effect (P < 0.02) was detected, such that AG steers had a higher cortisol response than RO steers. A breed × time interaction (P < 0.01) was observed for TNF-α, such that the response was delayed and extended in the RO steers compared with the AG steers. At 2 and 2.5 h after LPS, TNF-α concentrations were greater (P < 0.03) in RO steers than in AG steers. For IL-1β, a breed × time interaction (P < 0.04) was also observed. At 3 h after LPS, IL-1β concentrations were greater (P < 0.01) in RO steers than in AG steers. Serum IL-6 and IFN-γ increased (P < 0.01) in a similar manner in both groups after the LPS challenge. These data show differences in the innate immune response between two diverse Bos taurus breeds which may provide insight about differences observed in productivity, heat tolerance, disease resistance, and longevity among cattle breeds.  相似文献   
2.
The difference in the acute phase response of a heat-tolerant and a heat-sensitive Bos taurus breed to a lipopolysaccharide (LPS) challenge when housed at different air temperatures (Ta) was studied. Angus (ANG; heat-sensitive; n = 11; 306 ± 26 kg BW) and Romosinuano (RO; heat-tolerant; n = 10; 313 ± 32 kg BW) heifers were transported from the USDA Agricultural Research Service SubTropical Agricultural Research Station in Florida to the Brody Environmental Chambers at the University of Missouri, Columbia. Heifers were housed in stanchions in 4 temperature-controlled environmental chambers. Initially, Ta in the 4 chambers was cycling at thermoneutrality (TN; 18.5°C–23.5°C) for a 1-wk adjustment period, followed by an increase in 2 of the 4 chambers to cycling heat stress (HS; 24°C–38°C) for 2 wk. On day 19, heifers were fitted with jugular catheters and rectal temperature (RT) recording devices. On day 20, heifers were challenged with LPS (0.5 μg/kg BW; 0 h), sickness behavior scores (SBSs) were recorded, and blood samples were collected at 0.5-h intervals from −2 to 8 h and again at 24 h relative to LPS challenge at 0 h. Serum was isolated and stored at −80°C until analyzed for cortisol and cytokine concentrations. A breed by Ta interaction (P < 0.001) was observed for RT such that the post-LPS average RT in RO heifers housed at TN was lower than the RT of all other treatment groups (P < 0.001), whereas ANG heifers housed at HS had greater post-LPS average RT than all other treatment groups (P < 0.001). In response to LPS, HS increased SBS after LPS in RO heifers compared to RO heifers housed at TN (P < 0.001), whereas HS decreased SBS after LPS in ANG heifers compared to ANG heifers housed at TN (P = 0.014). The cortisol response to LPS was greater in TN than in HS heifers (P < 0.01) and was also greater in RO than in ANG heifers (P = 0.03). A breed by Ta interaction (P < 0.01) was observed for tumor necrosis factor-α (TNF-α) concentration such that HS increased post-LPS serum concentrations of TNF-α in ANG heifers compared to ANG heifers housed at TN (P = 0.041), whereas HS decreased post-LPS concentrations of TNF-α in RO heifers compared to RO heifers housed at TN (P = 0.008). A tendency (P < 0.06) was observed for a breed by Ta interaction for IL-6 concentrations such that RO heifers had greater post-LPS concentrations of IL-6 than ANG heifers when housed at HS (P = 0.020). A breed by Ta interaction was observed for interferon-γ (IFN-γ; P < 0.01) concentrations such that HS decreased post-LPS concentrations of IFN-γ in ANG heifers compared to ANG heifers housed at TN (P < 0.001), and HS increased post-LPS concentrations of IFN-γ in RO heifers compared to RO heifers housed at TN (P = 0.017). These data indicate differences in the acute phase response between the heat-tolerant RO and heat-sensitive ANG heifers under different Ta which may aid in elucidating differences in productivity, disease resistance, and longevity among cattle breeds.  相似文献   
3.
The response of the immune and stress systems have been assessed in response to a lipopolysaccharide (LPS) challenge, yet the role of metabolism in mediating energy requirements during the acute phase response has not been sufficiently studied. This study tested heat-tolerant (Romosinuano [RO]) and heat-sensitive (Angus [ANG]) Bos taurus breeds at different ambient temperatures (Ta) to determine differential metabolic responses to LPS challenge. Twenty-one heifers (ANG: n = 11, 306 ± 26 kg BW; RO: n = 10, 313 ± 32 kg BW) were housed in stanchions in 4 temperature-controlled chambers. Initially, Ta in all 4 chambers was cycling at thermoneutrality (TN; 18.5°C–23.5°C) for a 1-wk adjustment period, followed by an increase in 2 chambers to cycling heat stress (HS; 24°C–38°C) for 2 wk. Five ANG and 5 RO heifers were housed at TN, whereas 6 ANG and 5 RO heifers were housed at HS. On day 19, heifers were fitted with jugular catheters. On day 20, heifers were challenged with LPS (0.5 μg/kg BW; 0 h), and blood samples were collected from −2 to 8 h and at 24 h relative to LPS challenge. Serum was analyzed for glucose, insulin, and NEFA concentrations. In addition, feed intake was measured 3 d before and on the day of the challenge. Feed intake decreased over time (P < 0.001) and was decreased in heifers housed at HS compared with heifers housed at TN (P = 0.013). Glucose concentrations before LPS challenge were greater in RO (P = 0.01) than in ANG heifers and greater in TN-housed heifers (P = 0.02) than in HS heifers. Glucose after LPS challenge initially increased before decreasing below baseline concentrations (P < 0.01) in all heifers. In addition, there was a breed by Ta interaction (P < 0.004), such that HS decreased glucose concentrations in ANG heifers compared with ANG heifers housed at TN (P < 0.001), whereas HS did not affect glucose concentrations after LPS challenge in RO heifers (P = 0.941). Nonesterified fatty acid concentrations before LPS challenge were not affected by breed (P = 0.37) or Ta (P = 0.60). Although NEFA concentration after LPS challenge was unaffected by Ta (P = 0.78), there tended to be a breed by Ta interaction (P = 0.07) such that, when housed at HS, RO heifers had greater serum NEFA concentrations after LPS challenge than ANG heifers (P = 0.009). Insulin concentration before LPS challenge was greater in RO heifers than in ANG heifers (P < 0.01). Insulin after LPS challenge increased (P < 0.01), with RO heifers producing a greater insulin response than ANG heifers (P < 0.01). These data suggest that HS decreases the metabolic response of heat-sensitive ANG heifers in response to LPS challenge, thus providing physiological evidence that may explain differences observed in the acute phase response between heat-sensitive ANG and heat-tolerant RO cattle breeds.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号