首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2篇
畜牧兽医   1篇
  2015年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
《Veterinary microbiology》2015,175(1):99-104
The combination of new genotyping tools and a more exhaustive sampling policy in the analysis of infection by Mycobacterium tuberculosis has shown that infection by this pathogen is more complex than initially expected. Mixed infections, coexistence of clonal variants from a parental strain, and compartmentalized infections are all different modalities of this clonal complexity. Until recently, genotyping of Mycobacterium bovis in animal populations was based on spoligotyping and analysis of a single isolate per infection; therefore, clonal complexity is probably underdetected. We used multiple sampling combined with highly discriminatory MIRU-VNTR to study compartmentalized infections by M. bovis in a low-tuberculosis prevalence setting. We spoligotyped the M. bovis isolates from two or more anatomic locations sampled from 55 animals on 39 independent farms. Compartmentalized infections, with two different strains infecting independent lymph nodes in the same animal, were found in six cases (10.9%). MIRU-VNTR analysis confirmed that the compartmentalization was strict and that only one strain was present in each infected node. MIRU-VNTR analysis of additional infected animals on one of the farms confirmed that the compartmentalized infection was a consequence of superinfection, since the two strains were independently infecting other animals. This same analysis revealed the emergence of a microevolved clonal variant in one of the lymph nodes of the compartmentalized animal. Clonal complexity must also be taken into consideration in M. bovis infection, even in low-prevalence settings, and analyses must be adapted to detect it and increase the accuracy of molecular epidemiology studies.  相似文献   
2.
Eighty-nine accessions of wild and cultivated peas (12 Pisum fulvum Sibth. et Smith., 7 P. abyssinicum A. Br., 31 wild and 42 cultivated forms of P. sativum L.) were analysed for presence of the variants of three functionally unrelated polymorphic markers referring to different cellular genomes. The plastid gene rbcL either contains or not the recognition site for restriction endonuclease AspLEI (rbcL+ vs. rbcL−); the mitochondrial gene cox1 either contains or not the recognition site for restriction endonuclease PsiI (cox1+ vs. cox1−); the nuclear encoded seed albumin SCA is represented by slow (SCAS) or fast (SCAF) variant. Most of the accessions possessed either of two marker combinations: 24 had SCAF cox1+ rbcL+ (combination A) and 49 accessions had SCAS cox1rbcL− (combination B), 16 accessions represented 5 of the rest 6 possible combinations. All accessions of P. fulvum and P. abyssinicum had combination A, the overwhelming majority of cultivated forms of P. sativum had combination B while wild representatives of P. sativum had both combinations A and B, as well as rare combinations. This pattern indicates that combination A is the ancestral state in the genus Pisum L., inherited by P. fulvum and P. abyssinicum, while combination B seems to have arisen in some lineage of wild P. sativum which rapidly fixed mutational transitions of the three markers studied, most probably via a bottleneck effect during the Pleistocene. Then this ‘lineage B’ spread over Mediterranean and also gave rise to cultivated forms of P. sativum. Rare combinations may have resulted from occasional crosses between ‘lineage A’ and ‘lineage B’ in nature or during cultivation, or represent intermediate evolutionary lineages. The latter explanation seems relevant for an Egyptian cultivated form ‘Pisum jomardii Schrank’ (SCAF cox1rbcL−) which is here given a subspecies rank. Wild representatives of P. sativum could be subdivided in two subspecies corresponding to ‘lineage A’ and ‘lineage B’ but all available subspecies names seem to belong to lineage B only. Presently all wild forms would better be considered within a fuzzy paraphyletic subspecies P. sativum subsp. elatius (Bieb.) Schmalh. s. l.  相似文献   
3.
Here we review growing evidence that microevolutionary changes may often be rapid and, in many cases, occur on time frames comparable to human disturbance and anthropogenic change. Contemporary evolutionary change has been documented in relatively pristine habitats, in disturbed populations, under captive management, and in association with both intentional and inadvertent introductions. We argue that evolutionary thinking is thus relevant to conservation biology and resource management but has received insufficient consideration. Ignoring evolution may have a variety of consequences, including unpredicted evolutionary responses to disturbance and naive or inappropriate management decisions. Philosophically, we must also grapple with the issue of whether the evolution of adaptations to disturbance and degraded habitats is sometimes beneficial or something to be rigorously avoided. We advocate promoting evolutionarily enlightened management [Lecture Notes in Biomathematics 99 (1994) 248], in which both the ecological and evolutionary consequences of resource management decisions are considered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号