首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   6篇
  国内免费   4篇
林业   3篇
综合类   9篇
农作物   8篇
水产渔业   2篇
畜牧兽医   26篇
园艺   77篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   9篇
  2019年   17篇
  2018年   13篇
  2017年   8篇
  2016年   11篇
  2015年   7篇
  2014年   14篇
  2013年   9篇
  2012年   5篇
  2011年   11篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  1956年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
1.
AIM: To study the effects of baicalin on CA46 cell xenografts in nude mice. METHODS: The nude mice with CA46 cell xenografts were treated with drugs via intraperitoneal injection daily, and were divided into 5 groups: negative control group, 15 mg/kg baicalin group, 30 mg/kg baicalin group, 60 mg/kg baicalin group and 4 mg/kg etoposide (VP-16) positive control group. After 12-day treatment, the weight of CA46 cell xenografts stripped from some nude mice in the 5 groups was used to evaluate the effect of baicalin on xenograft growth in the nude mice. The apoptosis, necrosis and pathological changes of the xenograft cells were examined under light microscope and transmission electronic microscope respectively. The expression levels of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway-related proteins extracted from xenografts were determined by Western blotting. The other nude mice with CA46 cell xenografts in the 5 groups continued to be treated with the drugs until death in order to evaluate the effect of balcalin on survival time of the nude mice with CA46 cell xenografts. RESULTS: Baicalin remarkably inhibited the growth of CA46 cell xenografts, induced apoptosis and necrosis of xenograft cells, and reduced the protein expression of phospho-Akt (p-Akt), nuclear factor-kappa B (NF-κB), mammalian target of rapamycin (mTOR) and phospho-mTOR (p-mTOR) in the xenografts after 12-day treatment. Furthermore, baicalin prolonged the survival time of the nude mice with CA46 cell xenografts in a dose-dependent manner. CONCLUSION: Baicalin inhibits the growth and induces apoptosis of CA46 cell xenografts in the nude mice, and prolongs the survival time of the nude mice with CA46 cell xenografts through the mechanism of down-regulating PI3K/Akt/NF-κB and PI3K/Akt/ mTOR signaling pathways.  相似文献   
2.
AIM: To explore the effect of shikonin on rat primary cortical neurons in oxygen-glucose deprivation (OGD)-induced injury model.METHODS: The neurons were pretreated with shikonin at different concentrations (0.02, 0.2, 2 and 20 μmol/L) followed by treatment with OGD. Lactate dehydrogenase (LDH) release assay and fluorescein diacetate/propidium iodide (FDA/PI) double staining were used to detect neuronal viability and apoptosis, and then the optimal concentration of shikonin was determined. LY294002 (PI3K/Akt signaling pathway inhibitor, 1 μmol/L) was added before the addition of shikonin, and the protein level of p-Akt (Ser473) in the neurons was determined by Wes-tern blot. LDH release assay and FDA/PI double staining were also used to detect neuronal viability and apoptosis.RESULTS: A certain concentration (0.2~20 μmol/L) of shikonin increased the viability of impaired neurons (P<0.05) and the protein level of p-Akt (Ser473) in the neurons (P<0.05). The effect of shikonin on neuronal p-Akt (Ser473) levels and the cell death were blocked by LY294002 (P<0.05).CONCLUSION: A certain concentration of shikonin reduces OGD-induced apoptosis of rat primary cortical neurons by activating PI3K/Akt signaling pathway.  相似文献   
3.
AIMTo investigate whether Rho-associated coiled-coil kinase (ROCK) is involved in high glucose-induced apoptosis of primary cardiomyocytes by regulating PI3K/Akt signaling pathway. METHODSPrimary Wistar rat cardiomyocytes were cultured and identified by α-sarcomeric actin (α-SCA) immunohistochemistry. Cardiomyocytes were treated with 5.5, 33 and 40 mmol/L glucose for 48 h. The cell viability was measured by MTT assay, and the mRNA expression of ROCK1 and ROCK2 in the cardiomyocytes was detected by RT-qPCR. Flow cytometry was used to analyze the apoptosis of the cardiomyocytes. The protein levels of ROCK1, ROCK2, cleaved caspase-3, Bcl-2, PI3K, Akt and p-Akt were determined by Western blot. In order to confirm the regulatory effect of ROCKs on PI3K/Akt signaling pathway, the cells were divided into control group (5.5 mmol/L glucose), high glucose group (33 mmol/L glucose) and high glucose+Y27632 (ROCK inhibitor) group. Western blot was used to detect the protein levels of ROCK1, ROCK2, PI3K, Akt and p-Akt. RESULTSAfter 48 h of high glucose exposure, the values of relative cell viability in 33 and 40 mmol/L glucose groups were (79.71±2.43)% and (68.41±7.49)%, respectively, both of which were significantly decreased compared with normal control group (P<0.05). After 48 h of high glucose exposure, the relative mRNA levels of ROCK1 and ROCK2 in 33 and 40 mmol/L glucose groups were significantly increased compared with normal control group (P<0.05). Compared with normal control group, the apoptotic rate in 33 and 40 mmol/L glucose groups was increased significantly (P<0.05). Compared with normal control group, the protein expression of ROCK1, ROCK2 and cleaved caspase-3 in 33 and 40 mmol/L glucose groups was increased (P<0.05), while the protein expression of Bcl-2 was decreased (P<0.05). No significant difference in the protein levels of PI3K and Akt among the 3 groups was observed, while the protein level of p-Akt in 33 and 40 mmol/L glucose groups was decreased compared with normal control group (P<0.05). Compared with high glucose group, the expression of ROCK1 and ROCK2 was decreased in high glucose+Y27632 group. No significant difference in the protein levels of PI3K and Akt among the 3 groups was observed. Compared with normal control group, the protein level of p-Akt in high glucose group was decreased, and the protein level of p-Akt in high glucose+Y27632 group was increased significantly compared with high glucose group. CONCLUSION Under high glucose environment, ROCK may reduce the level of p-Akt by inhibiting the PI3K/Akt signaling pathway, thus promoting the apoptosis of cardiomyocytes.  相似文献   
4.
AIM: To observe the changes of Notch1 expression and autophagy in the renal tissues of diabetic mice, and to explore the regulatory effect of Notch1 on tubulointerstitial fibrosis by inhibiting autophagy in diabetic nephro-pathy. METHODS: The mice were randomly divided into normal control group (db/m mice) and diabetes group (db/db mice), with 8 rats in each group. After 12 weeks of feeding, the mice were sacrificed and the corresponding biochemical indexes were measured. The protein expression of Notch1 in the renal tubular epithelial cells was observed by immunohistochemical staining. The protein levels of Notch1, PTEN, p-Akt (Thr308), Akt, p-mTOR (Ser2448), mTOR, LC3, P62, collagen type Ⅰ (Col-Ⅰ) and collagen type Ⅲ (Col-Ⅲ) were determined by Western blot. RESULTS: Compared with the db/m mice, the blood glucose, glycosylated hemoglobin, serum creatinine, triglyceride and total cholesterol were increased in the db/db mice (P<0.01). Renal tubular epithelial cell vacuolar degeneration, renal tubular expansion and interstitial inflammatory cell infiltration in db/db mouse renal tissues with HE staining were observed. The images of Masson staining showed collagenous fiber-like substance deposition in the glomerular capillaries and renal interstitium, and disarrangement of tubular structure in the renal tissues of db/db mice. The protein expression levels of PTEN and LC3-Ⅱ were decreased (P<0.01 or P<0.05), while the protein levels of Notch1, P62, p-mTOR (Ser2448), p-Akt (Thr308), Col-I and Col-III were increased in the db/db mice as compared with the db/m mice (P<0.01). However, no significant change of total mTOR and Akt proteins between the 2 groups was found. CONCLUSION: Notch1 protein expression was increased, PTEN expression was significantly reduced, Akt/mTOR pathway was activated, autophagy was inhibited, and fibrosis was aggravated in the renal tissues of the diabetic mice.  相似文献   
5.
Growth hormone (GH) plays a specific role to inhibit apoptosis in the bovine mammary gland through the insulin-like growth factor (IGF)-I system, however, the mechanism of GH action is poorly understood. In this study, we show that GH dramatically inhibits the expression of IGFBP-5, and GH along with IGF-I enhanced the phosphorylation of Akt through the reduction of IGF binding protein (IGFBP)-5. To determine how GH affects Akt through IGF-I in bovine mammary epithelial cells (BMECs), we examined the phosphorylation of Akt in GH treated BMECs and found that IGF-I induced phosphorylation of Akt was significantly enhanced by the treatment with GH. We demonstrated that GH reduces mRNA and protein expression of IGFBP-5 in BMECs, but it does not affect the expression of IGFBP-3. To determine that the enhanced effect of the Akt phosphorylation by the treatment of GH is due to the inhibition of the expression of IGFBP-5, we examined the effect of IGFBP-3 and -5 on the phosphorylation of Akt through IGF-I in the GH-treated BMECs. The phosphorylation of Akt was inhibited in a dose-dependent manner when IGFBP-5 was added at varying concentrations and was also inhibited in the presence of IGFBP-3. The results of this study suggest that GH plays an important role on mammary gland involution in bovine mammary epithelial cells.  相似文献   
6.
AIM: To investigate the effect of PI3K/Akt signaling pathway on S100A6-induced proliferation and migration of human osteosarcoma cell line 143B. METHODS: Recombinant human S100A6 protein (rhS100A6) was prepared. The 143B cells were treated with rhS100A6 in the presence or absence of PI3K inhibitor (LY294002 or wortmannin) exposure. The final concentrations of rhS100A6, LY294002 and wortmannin were 30 mg/L, 10 μmol/L and 0.5 μmol/L, respectively. The expression levels of total Akt (t-Akt) and phosphorylated Akt (p-Akt) in the 143B cells were analyzed by Western blotting. The cell proliferation and migration were determined by MTT and Transwell assays. RESULTS: rhS100A6 protein was successfully prepared, and significantly increased the proliferation and migration of 143B cells (P<005). rhS100A6 up-regulated the phosphorylation of Akt in 143B cells (P<005). Compared with rhS100A6 group, the level of p-Akt in 143B cells and the proliferation and migration of the cells were decreased in combined treatment group of rhS100A6 with LY294002 or wortmannin (P<005), where the proliferation rate at different time points dropped from 10.3% to 69.7% (P<005), and the migration rate dropped from 34.9% to 47.7% (P<005). CONCLUSION: To some extent, S100A6 promotes proliferation and migration of human ostersarcoma cell line 143B through PI3K/Akt signaling pathway.  相似文献   
7.
AIM:To investigate the relationship of microRNA-7 (miRNA-7) over-expression and epidermal growth factor receptor (EGFR)/phosphatidylinositol kinase-3 (PI3K)/protein kinase B (PKB, also called Akt) pathway in human nasopharyngeal carcinoma 5-8F cells. METHODS:The 5-8F cells were transfected with miRNA-7 mimics (carrying by Lipofectamine 2000). The expression of miRNA-7 was detected by real-time PCR. The cell proliferation was analyzed by CCK-8 assay. The cell colony-forming capability was determined by cell colony formation test. The expression of EGFR/PI3K/Akt at mRNA and protein levels was examined by real-time PCR and Western blotting. RESULTS:The expression level of miRNA-7 was significantly increased in 5-8F cells compared with negative control (NC) group and control group (P<0.01). The proliferation of NPC 5-8F cells was decreased extremely after tansfected with the miRNA-7 mimics (P<0.01), so did the result of the cell colony-formation test. The expression of EGFR/PI3K/Akt at mRNA and protein levels was significantly down-regulated compared with NC group and control group (P<0.01). CONCLUSION: Over-expression of miRNA-7 significantly inhibits the proliferation and colony-forming ability of nasopharyngeal carcinoma 5-8F cells by down-regulation of EGFR/PI3K/Akt pathway.  相似文献   
8.
AIM: To explore the role of Akt signal pathway in apoptosis of neural cells in adult rats treated with Zuogui Pill, a Chinese medicine. METHODS: Flowcytometry and Western blotting methods were used to investigate the changes of cellular apoptosis rate and Akt signal pathway. RESULTS: Monosodium glutamate (MSG) could increase cellular apoptosis rate and significantly restrained the phosphorylation of Akt (Ser473) and Akt (Thr308), and markedly increased the levels of phospho-FKHR (ser256), GSK-3β (Ser9) and PTEN. Zuogui Pill partly inhibited the above effects of MSG. CONCLUSION: Zuogui pill effectively inhibits the neural apoptosis induced by MSG, and Akt pathway is involved in the neuronal protection of Zuogui pill.  相似文献   
9.
PI3K/Akt信号转导通路在ALV-J感染中作用的初步研究   总被引:1,自引:0,他引:1  
 【目的】探讨ALV-J在宿主细胞中复制与PI3K/Akt信号转导通路的关系。【方法】将血管瘤病变型ALV-J毒株HN06和骨髓瘤病变型ALV-J毒株NX0101分别感染DF-1细胞,通过Western blot、Real-time PCR、IFA和ELISA等方法,观察细胞Akt蛋白磷酸化水平、病毒RNA表达水平和病毒蛋白表达水平等指标。【结果】HN06株和NX0101株在体外细胞中复制水平有差异。HN06株的早期感染可引起Akt转导通路的活化,病毒引起的Akt磷酸化具有病毒滴度依赖性,而且能被PI3K特异性抑制剂LY294002所抑制,表明HN06株诱导的Akt活化是PI3K途径依赖的。LY294002可在病毒感染早期呈剂量依赖性地显著降低受染细胞中HN06 RNA水平、囊膜蛋白水平和细胞培养物上清中的病毒粒子含量。【结论】PI3K/Akt信号转导通路活化对HN06株在细胞感染早期具有重要的作用,该结果与已报道的有关细胞PI3K/Akt信号转导通路参与NX0101株的早期感染的结论一致。本研究为进一步阐明ALV-J入侵宿主细胞和复制的精确机制等研究奠定了基础。  相似文献   
10.
脑缺血性疾病是人类健康的主要杀手之一,相关研究表明,神经细胞的凋亡是造成脑缺血疾病中神经系统损害的主要机制之一,而以整合素-黏着斑激酶(INT-FAK)控制调节的PI3K/PDK/Akt以及Raf/MEK/ERK两条主要信号途径引起的细胞凋亡是其主要作用机制。凋亡过程出现的诸多能加以调控的信号分子,都可以作为治疗脑缺血性损伤的潜在靶点。随着对脑缺血损伤与神经细胞凋亡关联的深入研究,抗凋亡治疗已经成为治疗脑缺血性疾病的重要途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号