首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
畜牧兽医   7篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   4篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.

Background

Serotonin (5‐hydroxytryptamine, 5HT) is involved in hypothalamic regulation of energy consumption. Also, the gut microbiome can influence neuronal signaling to the brain through vagal afferent neurons. Therefore, serotonin concentrations in the central nervous system and the composition of the microbiota can be related to obesity.

Objective

To examine adipokine, and, serotonin concentrations, and the gut microbiota in lean dogs and dogs with experimentally induced obesity.

Animals

Fourteen healthy Beagle dogs were used in this study.

Methods

Seven Beagle dogs in the obese group were fed commercial food ad libitum, over a period of 6 months to increase their weight and seven Beagle dogs in lean group were fed a restricted amount of the same diet to maintain optimal body condition over a period of 6 months. Peripheral leptin, adiponectin, 5HT, and cerebrospinal fluid (CSF‐5HT) levels were measured by ELISA. Fecal samples were collected in lean and obese groups 6 months after obesity was induced. Targeted pyrosequencing of the 16S rRNA gene was performed using a Genome Sequencer FLX plus system.

Results

Leptin concentrations were higher in the obese group (1.98 ± 1.00) compared to those of the lean group (1.12 ± 0.07, P = .025). Adiponectin and 5‐hydroytryptamine of cerebrospinal fluid (CSF‐5HT) concentrations were higher in the lean group (27.1 ± 7.28) than in the obese group (14.4 ± 5.40, P = .018). Analysis of the microbiome revealed that the diversity of the microbial community was lower in the obese group. Microbes from the phylum Firmicutes (85%) were predominant group in the gut microbiota of lean dogs. However, bacteria from the phylum Proteobacteria (76%) were the predominant group in the gut microbiota of dogs in the obese group.

Conclusions and Clinical Importance

Decreased 5HT levels in obese group might increase the risk of obesity because of increased appetite. Microflora enriched with gram‐negative might be related with chronic inflammation status in obese dogs.  相似文献   
2.
Although one study showed lower adiponectin concentrations in obese dogs, other recent studies indicate that adiponectin might not be decreased in obese dogs, raising the possibility that the physiology of adiponectin is different in dogs than in humans. The aim of this study was to investigate possible causes of the discrepancy between the two largest studies to date that assessed the association between adiposity and adiponectin concentration in dogs, including the validity of the assay, laboratory error, and the effects of breed, sex, and neuter status on the relationship between adiposity and adiponectin concentrations. Adiponectin concentrations measured with a previously validated adiponectin ELISA were compared with those estimated by Western blotting analysis of reduced and denatured plasma samples. The possibility of laboratory error and the effect of EDTA anticoagulant and aprotinin were tested. Adiponectin concentration was measured by ELISA in 20 lean dogs (10 male and 10 female, 5 neutered in each sex). There was close correlation between adiponectin concentrations measured by ELISA and those estimated by Western blotting analysis (r = 0.90; P < 0.001). There was no substantial effect of EDTA, aprotinin, or laboratory error on the results. There was confounding by neuter status of the relationship between adiposity and adiponectin concentrations, but adiponectin concentrations were not significantly lower in male than in female lean dogs (females, 36 mg/L; males, 26 mg/L; P > 0.20) and were not significantly lower in intact than in neutered lean male dogs (intact, 28 mg/L; neutered, 23 mg/L; P = 0.49). We conclude that the adiponectin ELISA previously validated for use in dogs appears to be suitable for determination of canine adiponectin concentrations and that testosterone does not appear to have a strong effect on plasma adiponectin concentrations in dogs. Obesity might decrease adiponectin concentrations in intact but not in neutered dogs.  相似文献   
3.
4.
The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P = 0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2nM: approximately 4-fold; 20nM: approximately 14-fold; P = 0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone, similar dose- and time-dependent effects were noted. However, no effects were seen when adipocytes from the gonadal WAT depot were treated with rosiglitazone. The induction of 11β-HSD-1 expression, by the pro-inflammatory cytokine tumor necrosis factor α and by lipopolysaccharide may have implications for the pathogenesis of obesity and its associated diseases in the dog.  相似文献   
5.
6.
The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMAinsulin sensitivity and HOMAβ-cell function, respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity.  相似文献   
7.
Dogs develop obesity-associated insulin resistance but not type 2 diabetes mellitus. Low adiponectin is associated with progression to type 2 diabetes in obese humans. The aims of this study were to compare total and high molecular weight (HMW) adiponectin and the ratio of HMW to total adiponectin (SA) between dogs and humans and to examine whether total or HMW adiponectin or both are associated with insulin resistance in naturally occurring obese dogs. We compared adiponectin profiles between 10 lean dogs and 10 lean humans and between 6 lean dogs and 6 age- and sex-matched, client-owned obese dogs. Total adiponectin was measured with assays validated in each species. We measured SA with velocity centrifugation on sucrose gradients. The effect of total and HMW adiponectin concentrations on MINMOD-estimated insulin sensitivity was assessed with linear regression. Lean dogs had total and HMW adiponectin concentrations three to four times higher than lean humans (total: dogs 32 ± 5.6 mg/L, humans 10 ± 1.3 mg/L, P<0.001; HMW: dogs 25 ± 4.5 mg/L, humans 6 ± 1.3 mg/L, P<0.001) and a higher SA (dogs: 0.78 ± 0.05; humans: 0.54 ± 0.08, P = 0.002). Adiponectin concentrations and SA were not lower in obese dogs (0.76 ± 0.05 in both groups; P=1). Total adiponectin, HMW adiponectin, and SA were not associated with insulin sensitivity in dogs. We propose that differences in adiponectin profiles between humans and dogs might contribute to the propensity of humans but not dogs to develop type 2 diabetes. Dogs with chronic, naturally occurring obesity do not have selectively reduced HMW adiponectin, and adiponectin does not appear to be important in the development of canine obesity-associated insulin resistance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号