首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   4篇
  1篇
综合类   1篇
水产渔业   9篇
畜牧兽医   2篇
植物保护   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Amoebic gill disease (AGD) has been attributed to infection by Neoparamoeba sp. The causal mechanisms for AGD lesion development and the primary pathogenic role of Neoparamoeba sp. require elucidation. Three groups of Atlantic salmon were exposed to viable gill isolated amoebae, to sonicated amoebae, or to sea water containing viable amoebae without direct contact with gill epithelia. Fish were removed 8 days post-exposure and the gills assessed histologically for AGD. AGD occurred only when fish were exposed to viable trophozoites. Consequently, in an accompanying experiment, infection was evaluated histologically at 12, 24 and 48 h post-exposure in three groups of salmon, one group being mechanically injured 12 h prior to exposure. A progressive host response and significant increase (P < 0.001) in the numbers of attached amoebae was apparent over the 48-h duration in undamaged hemibranchs in both treatment groups. There were no significant differences to mucous cell populations. Attachment of Neoparamoeba sp. to damaged gill filaments was significantly reduced (P < 0.05) by 48 h post-exposure. These data further confirm and describe the primary pathogenic role of Neoparamoeba sp. and the early host response in AGD. Preliminary evidence suggests that lesions resulting from physical gill damage are not preferentially colonized by Neoparamoeba sp.  相似文献   
2.
全球智能产业正在蓬勃发展,Y 公司开始实践阿米巴经营模式使公司更好地抓住国内 外机遇,向服务型企业转型。但如何划分阿米巴、如何协调各阿米巴组织及激发员工的工作水 平等成为了组织转型中需要解决的问题。  相似文献   
3.
Routine gill swabbing is a non-destructive sampling method used for the downstream qPCR detection and quantitation of the pathogen Neoparamoeba perurans, a causative agent of amoebic gill disease (AGD). Three commercially available swabs were compared aiming their application for timelier AGD diagnosis (Calgiswab® (calcium alginate fibre-tipped), Isohelix® DNA buccal and cotton wool-tipped). Calcium alginate is soluble in most sodium salts, which potentially allows the total recovery of biological material, hence a better extraction of target organisms’ DNA. Thus, this study consisted of (a) an in vitro assessment involving spiking of the swabs with known amounts of amoebae and additional assessment of retrieval efficiency of amoebae from agar plates; (b) in vivo testing by swabbing of gill arches (second, third and fourth) of AGD-infected fish. Both in vitro and in vivo experiments identified an enhanced amoeba retrieval with Calgiswab® and Isohelix® swabs in comparison with cotton swabs. Additionally, the third and fourth gill arches presented significantly higher amoebic loads compared to the second gill arch. Results suggest that limiting routine gill swabbing to one or two arches, instead of all, could likely lead to reduced stress-related effects incurred by handling and sampling and a timelier diagnosis of AGD.  相似文献   
4.
5.
Freshwater bathing is essential for control of amoebic gill disease (AGD) during the marine phase of the Tasmanian Atlantic salmon production cycle, a practice that is costly, production limiting and increasing in frequency. Although the pathogenesis of gill infection with Neoparamoeba sp. in naïve Atlantic salmon, Salmo salar, is now understood, the progression of re‐infection (post‐treatment) required elucidation. Here, we describe the weekly histopathological progression of AGD from first to second freshwater bath. Halocline cessation and increased water temperature appeared to drive the rapid onset of initial infection prior to bathing. Freshwater bathing cleared lesions of attached trophozoites and associated cellular debris. Subsequent gill re‐infection with Neoparamoeba sp. was evident at 2 weeks post‐bath and had significantly increased (P < 0.001), in severity by 4 weeks post‐bath. No significant difference in gross pathology was observed until 4 weeks post‐bath (P < 0.05). The re‐infective progression of AGD was characterized by localized host tissue responses juxtaposed to adhered trophozoites (epithelial oedema, hypertrophy and hyperplasia), non‐specific inflammatory cell infiltration (macrophages, neutrophils and eosinophilic granule cells) and finally advanced hyperplasia with epithelial fortification. During the post‐bath period, non‐AGD lesions including haemorrhage, necrosis and regenerative hyperplasia were occasionally observed, although no evidence of secondary colonization of these lesions by Neoparamoeba sp. was noted. We conclude that pathogenesis during the inter‐bath period was identical to initial infection although the source of re‐infection remains to be established.  相似文献   
6.
Summary Clones of Phryganella acropodia were cultivated under different trophic conditions with bacteria as the food source. The doubling time was estimated to be 3 days. The edibility of four species of fungi, Aspergillus niger, Cunninghamella echinulata, Penicillium echinulatum and Stilbella bulbicola, was tested, but only Penicillium enchinulatum and Stilbella bulbicola were eaten and digested by the amoeba. An ultrastructure examination showed that there are two contractile vacuoles, many dictyosomes, a single nucleus with several nucleoli, and peroxisomes. The pseudopodia are filiform when attached to the substrate but change to lobose when the animal is floating. A thin organic membrane covers the aperture of resting forms.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   
7.
8.
Amoebic gill disease (AGD) is currently the most important disease affecting the Tasmanian salmonid industry and is caused by a marine amoeba, Neoparameoba pemaquidensis (Page, 1970). In this study biofouling communities on salmon cages were surveyed for the presence of the disease agent over a period of 4 months. Malt–yeast–seawater (MYS) agar plates were used to culture N. pemaquidensis with its presence confirmed by immunofluorescent antibody test (IFAT). Positive percentages of categorised samples ranged from 0% to 55%. The survey detected the presence of N. pemaquidensis on a number of macrofouling species (in particular bryozoan Scrupocellaria bertholetti and solitary ascidian Ciona intestinalis), and in microfouling and water samples. High percentages of positive IFATs occurred in microfouling aggregates, the solitary ascidian, C. intestinalis, and centrifuged water samples. No positive IFATs occurred from samples of Caprella sp. The presence of N. pemaquidensis was sporadic and varied in species and over sampling month. Experimental exposure of Atlantic salmon, Salmo salar, to lightly fouled netting was conducted to assess the potential for microfouling to act as a source of infection. No signs of the disease were detected in fish exposed to lightly fouled netting treatments, while 100% of positive control fish were infected and had an average of 4.24±1.79 amoebae per field of view in IFAT of mucus smears. When combined with N. pemaquidensis loads in the water column, the loads of amoebae in biofouling communities may contribute to disease outbreaks. Thus, biofouling should be considered a risk factor for AGD outbreaks.  相似文献   
9.
Gross pathological assessment of amoebic gill disease (AGD) is the only non-destructive, financially viable method for rapid and broad-scale disease management of farmed Atlantic salmon, Salmo salar L., in Tasmania. However, given the presumptive nature of this diagnosis, the technique has been considered questionable. This study investigated the degree of conformity between clinical signs and histological lesions observed in a commercial setting. Three groups of Atlantic salmon (n = 42, 100 and 100, respectively) were collected from various farm sites in southern Tasmania between December 2001 and April 2003. Micro-stereoscopic analysis showed that grossly affected tissue regions correspond to areas of hyperplastic lamellar fusion, generally in association with attached Neoparamoeba sp. Agreement between gross signs of AGD and histopathological diagnosis was compared. Kappa analysis indicated moderate to good agreement between methods (kappa = 0.52-0.74). Individual cases of disagreement were further scrutinized and several factors were found to influence the level of agreement between the two methods. Stage of disease development, lesions derived from other pathogens, assessor interpretation/experience, sampling methods, histological technique and/or experience were potential confounding factors. It was concluded that clinical diagnosis is acceptable as a farm-monitoring tool only. Removal of grossly affected tissue and subsequent histological examination is recommended to improve diagnostic accuracy.  相似文献   
10.
Because biological control ofRhizoctonia solani in potato with conidial suspensions of the mycoparasiteVerticillium biguttatum was often less successful in sandy soils than in loamy soils, we examined soils of potato fields for the presence of organisms destructive to conidia ofV. biguttatum.Representatives of conidiophagous testate amoebae were frequently present on sclerotium disks ofR. solani infected withV. biguttatum in all soils studied and were most active under moist conditions. Conidiophagous naked amoebae were also numerous, except for two loam soils, and were not sensitive to moist conditions. Conidiophagous ciliates were found in rather low numbers and were most frequently isolated from coarsely structured soils under moist conditions. Conidiophagous flagellates were very infrequently observed.A bacterial type, parasitizing and killing conidia and hyphae ofV. biguttatum, was observed in all soils studied. It produced clusters of cocci fixed to the outside of conidia and hyphae and was most active under moist soil conditions.The possible role of protozoan predators and bacterial parasites in the biological control ofR. solani in potato withV. biguttatum applied at planting is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号