首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
水产渔业   41篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   9篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
排序方式: 共有41条查询结果,搜索用时 421 毫秒
1.
Neoparamoeba pemaquidensis is an ubiquitous amphizoic marine protozoan and has been implicated as the causative agent for several diseases in marine organisms, most notably amoebic gill disease (AGD) in Atlantic salmon. Despite several reports on the pathology of AGD, relatively little is known about the protozoan and its relationship to host cells. In this study, an in vitro approach using monolayers of a rainbow trout gill cell line (RTgill-W1, ATCC CRL-2523) was used to rapidly grow large numbers of N. pemaquidensis (ATCC 50172) and investigate cell-pathogen interactions. Established cell lines derived from other tissues of rainbow trout and other fish species were also evaluated for amoeba growth support. The amoebae showed preference and highest yield when grown with RTgill-W1 over nine other tested fish cell lines. Amoeba yields could reach as high as 5 x 10(5) cells mL(-1) within 3 days of growth on the gill cell monolayers. The amoebae caused visible focal lesions in RTgill-W1 monolayers within 24 h of exposure and rapidly proliferated and spread with cytopathic effects destroying the neighbouring pavement-like cells within 48-72 h after initial exposure in media above 700 mOsm kg(-1). Disruption of the integrity of the gill cell monolayers could be noted within 30 min of exposure to the amoeba suspensions by changes in transepithelial resistance (TER) compared with control cell monolayers maintained in the exposure media. This was significantly different by 2 h (P < 0.05) compared with control cells and remained significantly different (P < 0.01) for the remaining 72 h that the TER was monitored. The RTgill-W1 cell line is thus a convenient model for growing N. pemaquidensis and for studying host-pathogen interactions in AGD.  相似文献   
2.
Neoparamoeba sp., including the putative aetiological agent of amoebic gill disease in cultured fish (N. pemaquidensis), were incubated in vitro with an Atlantic salmon gill epithelium (RGE-2) cell line. Proliferation by the amoeba population was dependent upon culture osmolarity; no growth occurred at 330 mm x kg(-1) but a sixfold increase was observed at 1000 mm x kg(-1). At 780 mm x kg(-1) there was a fourfold increase in the amoeba population but a concurrent decrease in RGE-2 cell density that was significantly greater than that caused by the high culture osmolarity alone. This apparent cytopathic effect (CPE) developed rapidly and resulted in complete cytolysis of the monolayer in 5 days. CPE occurred in multiple foci and presented as cell vacuolation, rounding and clumping, and the rapid clearance of large areas of the cell monolayer. The possibility that CPE is because of the presence of Neoparamoeba sp. derived cytolytic products is discussed in the context of the pathology of the disease in vivo and the occurrence of secreted cytopathogenic compounds in other amoeba species.  相似文献   
3.
Amoebic gill disease (AGD) has been attributed to infection by Neoparamoeba sp. The causal mechanisms for AGD lesion development and the primary pathogenic role of Neoparamoeba sp. require elucidation. Three groups of Atlantic salmon were exposed to viable gill isolated amoebae, to sonicated amoebae, or to sea water containing viable amoebae without direct contact with gill epithelia. Fish were removed 8 days post-exposure and the gills assessed histologically for AGD. AGD occurred only when fish were exposed to viable trophozoites. Consequently, in an accompanying experiment, infection was evaluated histologically at 12, 24 and 48 h post-exposure in three groups of salmon, one group being mechanically injured 12 h prior to exposure. A progressive host response and significant increase (P < 0.001) in the numbers of attached amoebae was apparent over the 48-h duration in undamaged hemibranchs in both treatment groups. There were no significant differences to mucous cell populations. Attachment of Neoparamoeba sp. to damaged gill filaments was significantly reduced (P < 0.05) by 48 h post-exposure. These data further confirm and describe the primary pathogenic role of Neoparamoeba sp. and the early host response in AGD. Preliminary evidence suggests that lesions resulting from physical gill damage are not preferentially colonized by Neoparamoeba sp.  相似文献   
4.
Amoebic gill disease (AGD) affects the marine culture phase of Atlantic salmon, Salmo salar L., in Tasmania. Here, we describe histopathological observations of AGD from smolts, sampled weekly, following transfer to estuarine/marine sites. AGD was initially detected histologically at week 13 post-transfer while gross signs were not observed for a further week post-transfer. Significant increases (P < 0.001) in the proportion of affected gill filaments occurred at weeks 18 and 19 post-transfer coinciding with the cessation of a halocline and increased water temperature at the cage sites. The progression of AGD histopathology, during the sampling period, was characterized by three phases. (1) Primary attachment/interaction associated with extremely localized host cellular alterations, juxtaposed to amoebae, including epithelial desquamation and oedema. (2) Innate immune response activation and initial focal hyperplasia of undifferentiated epithelial cells. (3) Finally, lesion expansion, squamation-stratification of epithelia at lesion surfaces and variable recruitment of mucous cells to these regions. A pattern of preferential colonization of amoebae at lesion margins was apparent during stage 3 of disease development. Together, these data suggest that AGD progression was linked to retraction of the estuarine halocline and increases in water temperature. The host response to gill infection with Neoparamoeba sp. is characterized by a focal fortification strategy concurrent with a migration of immunoregulatory cells to lesion-affected regions.  相似文献   
5.
Previous studies have indicated that when Atlantic salmon, Salmo salar L., are exposed to Neoparamoeba sp. the fish produce anti-Neoparamoeba sp. antibodies. It appears unlikely that these antibodies elicit any specific protection against amoebic gill disease (AGD) as fish with demonstrable activities have been affected by AGD. Experiments were conducted on Atlantic salmon cultured throughout Tasmania to assess the natural production of antibodies towards Neoparamoeba sp. Fish were sampled from areas where AGD was prevalent and from areas where there had been no reported cases. An enzyme-linked immunosorbent assay (ELISA) was used to measure anti-Neoparamoeba sp. antibody activities in serum. All fish from sea water had antibody activities greater than the negative control fish, including fish from areas with no reported cases of AGD. Time trial samples indicated that time after transfer to sea water did not appear to be a significant (P > 0.05) factor in antibody activity, however location was (P < 0.05). There was no agreement (corrected kappa value, 0.16) between the ELISA result and the isolation of Neoparamoeba sp. from the gills of the same fish. The results suggest that Atlantic salmon in seawater culture in Tasmania produce anti-Neoparamoeba sp. antibodies regardless of infection history, suggesting the presence of Neoparamoeba sp. in the environment.  相似文献   
6.
7.
Hydrogen peroxide (H2O2) is a commonly used treatment for a range of parasitic diseases of marine finfish, including amoebic gill disease (AGD). While this treatment is partially effective at reducing parasite load, H2O2 can have detrimental effects on the host under certain conditions. Treatment temperature and dose concentration are two factors that are known to influence the toxicity of H2O2; however, their impact on the outcome of AGD treatment remains unclear. Here, we investigated the effects of treatment temperature (8, 12 or 16°C) and dose concentration (750, 1,000, 1,250 mg/L) on the efficacy of H2O2 to treat AGD. We demonstrated that a 20-min bath treatment of H2O2 at all doses reduced both parasite load and gross gill score significantly. Parasite load and gross gill score were lowest in the 1,000 mg/L treatment performed at 12°C. At the high dose and temperature combinations, H2O2 caused moderate gill damage and a significant increase in the plasma concentration of electrolytes (sodium, chloride and potassium). Taken together, our study demonstrates that higher H2O2 treatment temperatures can adversely affect the host and do not improve the effectiveness of the treatment.  相似文献   
8.
Freshwater bathing is one of the main treatment options available against amoebic gill disease (AGD) affecting multiple fish hosts in mariculture systems. Prevailing freshwater treatments are designed to be long enough to kill Neoparamoeba perurans, the ectoparasite causing AGD, which may select for freshwater tolerance. Here, we tested whether using shorter, sublethal freshwater treatment durations are a viable alternative to lethal ones for N. perurans (2–4 hr). Under in vitro conditions, gill‐isolated N. perurans attached to plastic substrate in sea water lifted off after ≥2 min in freshwater, but survival was not impacted until 60 min. In an in vivo experiment, AGD‐affected Atlantic salmon Salmo salar subjected daily to 30 min (sublethal to N. perurans) and 120 min (lethal to N. perurans) freshwater treatments for 6 days consistently reduced N. perurans cell numbers on gills (based on qPCR analysis) compared to daily 3 min freshwater or seawater treatments for 6 days. Our results suggest that targeting cell detachment rather than cell death with repeated freshwater treatments of shorter duration than typical baths could be used in AGD management. However, the consequences of modifying the intensity of freshwater treatment regimes on freshwater tolerance evolution in N. perurans populations require careful consideration.  相似文献   
9.
There have been recent efforts amongst immunologists to develop approaches for following individual fish during challenges with viral and bacterial pathogens. This study contributes to assessing the feasibility of using such approaches to study amoebic gill disease (AGD). Neoparamoeba perurans, agent of AGD, has been responsible for widespread economic and fish loss in salmonid aquaculture. With the emergence of AGD in Europe, research into infection dynamics and host response has increased. This study investigated the effect of repeat exposure to anaesthesia, a necessary requirement when following disease progression in individual fish, on N. perurans. In vitro cultures of N. perurans were exposed every 4 days over a 28‐day period to AQUI‐S® (isoeugenol), a popular anaesthetic choice for AGD challenges, at a concentration and duration required to sedate post‐smolt salmonids. Population growth was measured by sequential counts of amoeba over the period, while viability of non‐attached amoeba in the culture was assessed with a vital stain. AQUI‐S® was found to be a suitable choice for in vivo ectoparasitic challenges with N. perurans during which repetitive anaesthesia is required for analysis of disease progression.  相似文献   
10.
Amoebic gill disease (AGD), caused by Neoparamoeba perurans, is a major health challenge for Atlantic salmon aquaculture globally. While freshwater bathing for 2 hr is effective in reducing infection severity, there is need for more rapid and lower cost alternatives. To this end, a combination of sodium percarbonate (SPC) in freshwater was examined for its treatment efficacy. Initial in vitro studies showed a reduction in amoeba viability when exposed for 30 min to freshwater containing >500 mg/L SPC. Subsequently, AGD‐affected salmon were bathed for 30 min in 16°C freshwater containing 100, 500 or 1,000 mg/L SPC, or for 2 hr in 16°C freshwater to mimic industry practice. Treatment at the highest SPC concentration caused extensive gill damage and substantial mortality. Neither occurred to a significant extent at lower SPC concentrations. Gill pathology of surviving fish 10 days post‐treatment (dpt) was comparable to or more severe than pre‐treatment, and significantly (p < .001) more severe than in 2 hr freshwater bathed fish. N. perurans DNA was confirmed by qPCR in all treatment groups at 10 dpt. The data indicate that a 30‐min exposure to SPC in freshwater is not a suitable alternative to existing freshwater treatment of AGD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号