首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
农作物   11篇
水产渔业   1篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2016年   1篇
排序方式: 共有12条查询结果,搜索用时 476 毫秒
1.
The marine microorganisms thraustochytrids have been explored for their potential in the production of various bioactive compounds, such as DHA, carotenoids, and squalene. Squalene is a secondary metabolite of the triterpenoid class and is known for its importance in various industrial applications. The bioinformatic analysis for squalene synthase (SQS) gene (the first key enzyme in the tri-terpenoid synthesis pathway), that is prevailing among thraustochytrids, is poorly investigated. In-silico studies combining sequence alignments and bioinformatic tools helped in the preliminary characterization of squalene synthases found in Aurantiochytrium limacinum. The sequence contained highly conserved regions for SQS found among different species indicated the enzyme had all the regions for its functionality. The signal peptide sequence and transmembrane regions were absent, indicating an important aspect of the subcellular localization. Secondary and 3-D models generated using appropriate templates demonstrated the similarities with SQS of the other species. The 3-D model also provided important insights into possible active, binding, phosphorylation, and glycosylation sites.  相似文献   
2.
Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4–63.9 μg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 μg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were β-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A β-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.  相似文献   
3.
The Labyrinthulomycetes or Labyrinthulea are a class of protists that produce a network of filaments that enable the cells to glide along and absorb nutrients. One of the main two Labyrinthulea groups is the thraustochytrids, which are becoming an increasingly recognised and commercially used alternate source of long-chain (LC, ≥C20) omega-3 containing oils. This study demonstrates, to our knowledge for the first time, the regiospecificity of the triacylglycerol (TAG) fraction derived from Australian thraustochytrid Aurantiochytrium sp. strain TC 20 obtained using 13C nuclear magnetic resonance spectroscopy (13C NMR) analysis. The DHA present in the TC 20 TAG fraction was determined to be concentrated in the sn-2 position, with TAG (16:0/22:6/16:0) identified as the main species present. The sn-2 preference is similar to that found in salmon and tuna oil, and differs to seal oil containing largely sn-1,3 LC-PUFA. A higher concentration of sn-2 DHA occurred in the thraustochytrid TC 20 oil compared to that of tuna oil.  相似文献   
4.
Thraustochytrids are the most promising microbial source for the commercial production of docosahexaenoic acid (DHA) for its application in the human health, aquaculture, and nutraceutical sectors. The present study isolated 127 thraustochytrid strains from mangrove habitats of the south Andaman Islands, India to study their diversity, polyunsaturated fatty acids (PUFAs), and biotechnological potential. The predominant strains were identified as belonging to two major genera (Thraustochytrium, Aurantiochytrium) based on morphological and molecular characteristics. The strain ANVKK-06 produced the maximum biomass of 5.42 g·L−1, while ANVKK-03 exhibited the maximum total lipid (71.03%). Omega-3 PUFAs such as eicosapentaenoic acid (EPA) accumulated up to 11.03% in ANVKK-04, docosapentaenoic acid (DPA) up to 8.65% in ANVKK-07, and DHA up to 47.19% in ANVKK-06. ANVKK-06 showed the maximum scavenging activity (84.79 ± 2.30%) while ANVKK-03 and ANVKK-10 displayed the highest antibacterial activity against human and fish pathogens, S. aureus (18.69 ± 1.2 mm) and V. parahaemolyticus (18.31 ± 1.0 mm), respectively. All strains were non-toxic as evident by negative blood agar hemolysis, thus, the thraustochytrids are suggested to be a potential source of DHA for application in the health care of human and fish.  相似文献   
5.
The carotenogenic thraustochytrid Thraustochytrium sp. RT2316-16 was grown in batch and repeated-batch cultures using different feeds containing glucose, or glycerol, and yeast extract, for the production of lipids, phospholipids and carotenoids. RT2316-16 produced canthaxanthin, astaxanthin and β-carotene. The effects of biotin, ascorbic acid, light and temperature were evaluated in some of the experiments. In 2-day-old batch cultures, the combined mass percentage of eicosapentaenoic acid and docosahexaenoic acid in total lipids was between 16.5% (glycerol-based medium in the dark; biomass concentration = 4.2 ± 1.1 g L−1) and 42.6% (glucose-based medium under light; biomass concentration = 3.3 ± 0.1 g L−1), decreasing to 3.8% and 6.1%, respectively, after day 4. In repeated-batch cultures, the total lipids in the biomass increased after glucose or glycerol was fed alone, whereas the total carotenoids (168 ± 7 μg g−1 dry weight (DW)) and phospholipids in the biomass increased after feeding with yeast extract. The biomass with the highest content of phospholipids (28.7 ± 4.3 mg g−1 DW) was obtained using a feed medium formulated with glycerol, yeast extract and ascorbic acid. Glycerol was the best carbon source for the production of a biomass enriched with total lipids (467 ± 45 mg g−1 DW). The composition of carotenoids depended strongly on the composition of the feed. Repeated-batch cultures fed with yeast extract contained canthaxanthin as the main carotenoid, whereas in the cultures fed only with glucose, the biomass contained mainly β-carotene.  相似文献   
6.
Schizochytrium species are one of the best oleaginous thraustochytrids for high-yield production of docosahexaenoic acid (DHA, 22:6). However, the DHA yields from most wild-type (WT) strains of Schizochytrium are unsatisfactory for large-scale production. In this study, we applied the atmospheric and room-temperature plasma (ARTP) tool to obtain the mutant library of a previously isolated strain of Schizochytrium (i.e., PKU#Mn4). Two rounds of ARTP mutagenesis coupled with the acetyl-CoA carboxylase (ACCase) inhibitor (clethodim)-based screening yielded the mutant A78 that not only displayed better growth, glucose uptake and ACCase activity, but also increased (54.1%) DHA content than that of the WT strain. Subsequent optimization of medium components and supplementation improved the DHA content by 75.5 and 37.2%, respectively, compared with that of mutant A78 cultivated in the unoptimized medium. Interestingly, the ACCase activity of mutant A78 in a medium supplemented with biotin, citric acid or sodium citrate was significantly greater than that in a medium without supplementation. This study provides an effective bioengineering approach for improving the DHA accumulation in oleaginous microbes.  相似文献   
7.
Oblongichytrium RT2316-13 synthesizes lipids rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The content of these fatty acids in the total lipids depended on growth temperature. Sequencing technology was used in this work to examine the thraustochytrid’s response to a decrease in growth temperature from 15 °C to 5 °C. Around 4% (2944) of the genes were differentially expressed (DE) and only a few of the DE genes (533 upregulated; 206 downregulated) had significant matches to those in the SwissProt database. Most of the annotated DE genes were related to cell membrane composition (fatty acids, sterols, phosphatidylinositol), the membrane enzymes linked to cell energetics, and membrane structure (cytoskeletal proteins and enzymes). In RT2316-13, the synthesis of long-chain polyunsaturated fatty acids occurred through ω3- and ω6-pathways. Enzymes of the alternative pathways (Δ8-desaturase and Δ9-elongase) were also expressed. The upregulation of the genes coding for a Δ5-desaturase and a Δ5-elongase involved in the synthesis of EPA and DHA, explained the enrichment of total lipid with these two long-chain fatty acids at the low temperature. This molecular response has the potential to be used for producing microbial lipids with a fatty acids profile similar to that of fish oils.  相似文献   
8.
Thraustochytrids have gained significant attention in recent years because of their considerable ecological and biotechnological importance. Yet, the influence of seasons and habitats on their culturable diversity and lipid profile remains poorly described. In this study, a total of 58 thraustochytrid strains were isolated from the coastal waters of Qingdao, China. These strains were phylogenetically close to five thraustochytrid genera, namely Botryochytrium, Oblongichytrium, Schizochytrium, Thraustochytrium, and Sicyoidochytrium. Most of the isolated strains were classified into the genera Thraustochytrium and Oblongichytrium. Further diversity analysis revealed that samples collected from nutrient-rich habitats and during summer/fall yielded significantly higher culturable diversity of thraustochytrids than those from low-nutrient habitats and winter/spring. Moreover, sampling habitats and seasons significantly impacted the fatty acid profiles of the strains. Particularly, the Oblongichytrium sp. OC931 strain produced a significant amount (153.99 mg/L) of eicosapentaenoic acid (EPA), accounting for 9.12% of the total fatty acids, which was significantly higher than that of the previously reported Aurantiochytrium strains. Overall, the results of this study fill the gap in our current understanding of the culturable diversity of thraustochytrids in the coastal waters and the impact of the sampling habitats and seasons on their capacity for lipid accumulation.  相似文献   
9.
This study was conducted to investigate low‐cost substrate alternative and the optimum culture conditions in mass producing the local marine thraustochytrid, Schizochytrium sp. LEY7 isolated from the mangrove leaves of Baybay, Southern Leyte Philippines. Results showed that Schizochytrium sp. LEY7 is able to utilize commercial grade glucose and yeast extract from NaCl‐treated baker's yeast as source of carbon and micronutrients respectively. Cost of mass producing the thraustochytrid isolate using the alternative production substrates was substantially reduced. Incubation temperature and salinity levels were the two growth factors significantly affecting the biomass production of the isolate. The short duration of lag phase shown by the isolate suggests a growth advantage in that cells are readily able to adapt to their new environment. Total lipids averaged to 19.4%. Principal fatty acids were palmitic acid (C16:0) with 33.52% and docosahexanoic acid (DHA, C22:6n‐3) with 39.92% proportion to total fatty acid. Eicosapentaenoic (C20:5n‐3, 1.01%) and arachidonic (C20:4n‐3, 0.90%) are present but in relatively lower amount. Our findings showed the potential of low‐cost substrate in mass producing the local thraustochytrid isolate, Schizochytrium sp. LEY7 as lipid and polyunsaturated fatty acid source in aquaculture. Biomass production was enhanced by optimizing the culture conditions.  相似文献   
10.
Thraustochytrids are well-known unicellular heterotrophic marine protists because of their promising ability to accumulate docosahexaenoic acid (DHA). However, the implications of their unique genomic and metabolic features on DHA production remain poorly understood. Here, the effects of chemical and physical culture conditions on the cell mass and DHA production were investigated for a unique thraustochytrid strain, PKU#SW8, isolated from the seawater of Pearl River Estuary. All the tested fermentation parameters showed a significant influence on the cell mass and concentration and yield of DHA. The addition of monosaccharides (fructose, mannose, glucose, or galactose) or glycerol to the culture medium yielded much higher cell mass and DHA concentrations than that of disaccharides and starch. Similarly, organic nitrogen sources (peptone, yeast extract, tryptone, and sodium glutamate) proved to be beneficial in achieving a higher cell mass and DHA concentration. PKU#SW8 was found to grow and accumulate a considerable amount of DHA over wide ranges of KH2PO4 (0.125–1.0 g/L), salinity (0–140% seawater), pH (3–9), temperature (16–36 °C), and agitation (140–230 rpm). With the optimal culture conditions (glycerol, 20 g/L; peptone, 2.5 g/L; 80% seawater; pH 4.0; 28 °C; and 200 rpm) determined based on the shake-flask experiments, the cell mass and concentration and yield of DHA were improved up to 7.5 ± 0.05 g/L, 2.14 ± 0.03 g/L, and 282.9 ± 3.0 mg/g, respectively, on a 5-L scale fermentation. This study provides valuable information about the fermentation conditions of the PKU#SW8 strain and its unique physiological features, which could be beneficial for strain development and large-scale DHA production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号