首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2884篇
  免费   208篇
  国内免费   194篇
林业   177篇
农学   213篇
基础科学   34篇
  89篇
综合类   1005篇
农作物   202篇
水产渔业   346篇
畜牧兽医   541篇
园艺   178篇
植物保护   501篇
  2024年   18篇
  2023年   65篇
  2022年   115篇
  2021年   123篇
  2020年   99篇
  2019年   116篇
  2018年   82篇
  2017年   141篇
  2016年   134篇
  2015年   121篇
  2014年   118篇
  2013年   161篇
  2012年   203篇
  2011年   201篇
  2010年   128篇
  2009年   157篇
  2008年   145篇
  2007年   140篇
  2006年   160篇
  2005年   108篇
  2004年   98篇
  2003年   85篇
  2002年   73篇
  2001年   64篇
  2000年   58篇
  1999年   68篇
  1998年   43篇
  1997年   52篇
  1996年   36篇
  1995年   31篇
  1994年   22篇
  1993年   27篇
  1992年   22篇
  1991年   17篇
  1990年   14篇
  1989年   5篇
  1988年   10篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1955年   9篇
排序方式: 共有3286条查询结果,搜索用时 390 毫秒
1.
糖槭叶枯病 Phyllosticta negundinis病菌孢子放散开始期和高峰期与每年的温、湿度变化有关。病害发生严重程度与降雨量关系密切 ,降雨早且量大时病害严重。病菌以分生孢子器和分生孢子在病叶上越冬 ,通过气流传播成为翌年初侵染源。喷洒 70 %甲基托布津可湿性粉剂 10 0 0倍液和 75%百菌清可湿性粉剂 80 0倍液均能收到较好的效果  相似文献   
2.
一次防治大豆灰斑病籽粒灰斑   总被引:1,自引:1,他引:0  
通过室内及田间大豆不同生育期接种试验证明,籽粒感染灰斑病的关键时期是R3-R5期.R2期以前侵染不造成籽粒斑驳,据此提出一次防治大豆籽粒灰斑病的关键时期为R2-R4期.  相似文献   
3.
4.
Blackspot, caused by Diplocarpon rosae , is the most severe and ubiquitous disease of garden roses, but information is lacking about genotype-specific forms of resistance and susceptibility of the host. Macro- and microscopic analyses of 34 rose genotypes with a defined monoconidial culture black spot inoculum identified susceptible and resistant rose genotypes and further genotype-specific subdivisions, indicating the presence of partial forms of resistance and different resistance mechanisms. In total, eight interaction types were characterized, five representing compatible (types 1–5) and three representing incompatible interactions (types 6–8). The incompatible interactions were characterized by the lack of any visible fungal structures beneath the cuticle (type 8), single-cell necroses (type 7) or necroses of larger cell clusters (type 6), the latter two types with penetration hyphae and haustoria in epidermal cells.  相似文献   
5.
皖西白鹅羽区皮肤组织结构的研究及其绒被分析   总被引:3,自引:0,他引:3  
王珏  吴正祖 《畜牧与兽医》1995,27(4):159-160
本试验针对皖西白鹅绒皮制裘生产中的问题,观察研究了120、150、200、240、360、540六个日龄组计48只皖西白鹅绒皮的组织结构。结果表明,各日龄组皮肤结构差异不甚明显。其真皮内羽肌发达,羽囊粗大,脂肪组织含量多,纤维层薄,纤维成分少,排列疏松。240日龄以后纤维层增厚。  相似文献   
6.
Two viruses, detected frequently in the Netherlands in pelargonium, were identified by serology and test plant reactions. Antisera were prepared and an ELISA procedure was developed to detect the viruses in pelargonium.One of the viruses, PFBV-N, proved to be pelargonium flower-break virus. With the antiserum to PFBV-N, it could be detected reliably throughout the year inPelargonium zonale Springtime Irene.The other virus, PLPV-N, was serologically closely related to pelargonium line pattern virus (PLPV) and to pelargonium ring pattern virus (PRPV), as were an old virus isolate from Saturnus, collected in the Netherlands in 1971 (L128), and PLPV isolates from Yugoslavia (PLPV-Y) and Denmark (PLPV-D). There were only minor differences in host-plant reactions between the virus isolates. Based on these tests, PLPV and PRPV are considered as isolates of the same virus, for which, for practical reasons, the name pelargonium line pattern virus is proposed.PLPV could be reliably detected by ELISA inP. zonale Springtime Irene and Amanda throughout the year with only a few exceptions. InPelargonium peltatum Tavira, however, reslts were erratic due to uneven distribution of virus in the plant. Best results were obtained when petioles of fully expanded leaves were tested.  相似文献   
7.
Xanthomonas campestris pv. vitians , the causal agent of bacterial leaf spot of lettuce (BLS), can be seedborne, but the mechanism by which the bacteria contaminates and/or infects lettuce seed is not known. In this study, the capacity of X. campestris pv. vitians to enter and translocate within the vascular system of lettuce plants was examined. The stems of 8- to 11-week-old lettuce plants were stab-inoculated, and movement of X. campestris pv. vitians was monitored at various intervals. At 4, 8, 12 and 16 h post-inoculation (hpi), X. campestris pv. vitians was recovered from 2 to 10 cm above (depending on stem length) and 2 cm below the inoculation site. Xanthomonas campestris pv. vitians was also recovered from surface-disinfested stem sections of spray-inoculated plants. Together, these results are consistent with X. campestris pv. vitians invading and moving systemically within the vascular system of lettuce plants. To investigate the mechanism of seed contamination, lettuce plants at the vegetative stage of growth were spray-inoculated with X. campestris pv. vitians and allowed to develop BLS. Seed collected from these plants had a 2% incidence of X. campestris pv. vitians external colonization, but no bacteria were recovered from within the seed.  相似文献   
8.
The genetic and virulence variability of 112 isolates of Phaeoisariopsis griseola , collected from various locations in Central America, were studied using seven random amplified polymorphic DNA (RAPD) primers and 12 common-bean differential genotypes. Broad molecular diversity ( H  = 0·92) among isolates was found using RAPD markers. Fifty pathotypes were identified on 12 differential bean genotypes, 29 of which were represented by only one isolate. Only 18 pathotypes were found in two or more countries. Pathotype 63-63 was the most virulent and caused leaf spots on all 12 common-bean differential genotypes. Comparison of virulence phenotypes and RAPD profiles to known Andean P. griseola isolates confirmed that all isolates belonged to the Mesoamerican group. Pairwise comparison between individual RAPD loci showed that the majority were in gametic phase linkage disequilibrium, revealing that P. griseola maintains a genetic structure that is consistent with asexual reproduction. The molecular and virulence diversities of P. griseola isolates from Central America imply that using single resistance genes to manage angular leaf spot is inadequate and stacking resistance genes may be necessary to manage the disease effectively.  相似文献   
9.
套袋对红富士苹果色素及糖、酸含量的影响   总被引:58,自引:4,他引:58  
 以苹果(Malus pumila) ‘长富2’品种为试材, 研究了套袋对果皮色素及果肉糖、酸含量的影响。结果表明, 套袋果果皮色素、可溶性糖、可滴定酸具有同对照果基本相同的消长规律, 但含量均始终低于对照; 摘袋后果实可溶性糖含量迅速升高, 且花青苷积累速度明显快于对照; 套袋主要降低了果实中山梨醇和蔗糖的含量, 果糖和葡萄糖降低幅度相对较小。  相似文献   
10.
Infection processes of Pyrenophora semeniperda on seedling and adult wheat leaves and wheat ears were investigated. Almost 100% germination of conidia occurred on seedling leaves, compared with 20–30% on adult leaves. Appressoria formed over the anticlinal epidermal cell walls and haloes always accompanied infection. Sometimes papillae formed within the leaves as a resistance mechanism. Infection hyphae ramified through the intercellular spaces of the mesophyll resulting in cellular disruption. The infection processes on floral tissues were similar to those observed on leaves; however, no infection occurred on anther, stigmatic or stylar tissues. Infection of ovarian tissue occurred both with and without appressoria formation. Hyphae grew mainly in the epidermal layers and appeared unable to breach the integumental layer as no growth was observed in endosperm or embryo tissues. The optimum dew period temperature for conidial germination was 23·6°C, compared with 19·9°C for lesion development, 20·4°C for the production of infection structures on seedling leaves and 23·7°C for floret infection. Leaf disease development occurred in a logistic manner in response to dew period, with maximum infection observed after 21 h compared with > 48 h in seeds. An initial dark phase during the dew period was necessary for infection and temperature after the dew period had an effect, with significantly more numerous and larger lesions being formed at 15°C compared with 30°C. Seedling leaves were found to be more susceptible than older leaves, under both field and controlled environment conditions. Infection of wheat seeds following inoculation of ears, or after harvest burial of inoculated disease-free seeds, was demonstrated. In the latter, 3-week-old seedlings were slightly stunted, whereas older plants were unaffected. The apparent unimportance of this plant pathogen as a cause of leaf disease in relation to its poor adaptation to dew periods and dew period temperature is discussed, along with the importance of its seed borne characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号