首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
农作物   3篇
  2021年   2篇
  2015年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE “modulator” capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.  相似文献   
2.
Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and of two HS-membrane proteoglycans, syndecan-1 and -4 (SDC-1 and SDC-4), in LMWF induced angiogenesis. Our results showed that LMWF increases human vascular endothelial cell (HUVEC) migration and angiogenesis in vitro. We report that the expression and activity of the HS-degrading HPSE was increased after LMWF treatment. The phenotypic tests of LMWF-treated and EXT2- or HPSE-siRNA-transfected cells indicated that EXT2 or HPSE expression significantly affect the proangiogenic potential of LMWF. In addition, LMWF increased SDC-1, but decreased SDC-4 expressions. The effect of LMWF depends on SDC-4 expression. Silencing EXT2 or HPSE leads to an increased expression of SDC-4, providing the evidence that EXT2 and HPSE regulate the SDC-4 expression. Altogether, these data indicate that EXT2, HPSE, and SDC-4 are involved in the proangiogenic effects of LMWF, suggesting that the HS metabolism changes linked to LMWF-induced angiogenesis offer the opportunity for new therapeutic strategies of ischemic diseases.  相似文献   
3.
Unique fucosylated glycosaminoglycans (FG) have attracted increasing attention for various bioactivities. However, the precise structures of FGs usually vary in a species-specific manner. In this study, HfFG was isolated from Holothuria floridana and purified by anion exchange chromatography with the yield of ~0.9%. HfFG was composed of GlcA, GalNAc and Fuc, its molecular weight was 47.3 kDa, and the -OSO3/-COO molar ratio was 3.756. HfFG was depolymerized by a partial deacetylation–deaminative cleavage method to obtain the low-molecular-weight HfFG (dHfFG). Three oligosaccharide fragments (Fr-1, Fr-2, Fr-3) with different molecular weights were isolated from the dHfFG, and their structures were revealed by 1D and 2D NMR spectroscopy. HfFG should be composed of repeating trisaccharide units -{(L-FucS-α1,3-)d-GlcA-β1,3-d-GalNAc4S6S-β1,4-}-, in which sulfated fucose (FucS) includes Fuc2S4S, Fuc3S4S and Fuc4S residues linked to O-3 of GlcA in a ratio of 45:35:20. Furthermore, the heparanase inhibitory activities of native HfFG and oligosaccharide fragments (Fr-1, Fr-2, Fr-3) were evaluated. The native HfFG and its oligosaccharides exhibited heparanase inhibitory activities, and the activities increased with the increase of molecular weight. Additionally, structural characteristics such as sulfation patterns, the terminal structure of oligosaccharides and the presence of fucosyl branches may be important factors affecting heparanase inhibiting activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号