首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   6篇
  国内免费   12篇
林业   3篇
农学   7篇
基础科学   21篇
  71篇
综合类   11篇
农作物   3篇
畜牧兽医   1篇
园艺   3篇
植物保护   13篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   3篇
  2013年   18篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1984年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
1.
不同地下水位植物蒸腾耗水特性研究   总被引:20,自引:6,他引:20  
在甘肃省民勤治沙站利用非称量测渗仪研究了梭梭、柠条等 10种沙区植物的蒸腾耗水特征。结果表明 ,各种植物 5a的总蒸腾量由大到小排列为 :沙枣、花棒、沙木蓼、柠条、梭梭、白皮沙拐枣 ;随植物年龄增长 ,蒸腾系数有上升的趋势 ,而蒸散系数有下降的趋势 ;在民勤沙区 6~ 9月是主要蒸腾季节 ,该时段的蒸腾量占全年蒸腾量的80 %~ 90 % ;植物的蒸腾量随年龄的增长而迅速增加 ,但增长幅度随物种不同而异。一般生长快的植物增长快 ,生长慢的植物增长慢。  相似文献   
2.
单株油蒿蒸腾耗水特征及其与环境因素的关系   总被引:1,自引:0,他引:1  
[目的]探究油蒿的蒸腾耗水规律及其对环境因子的响应,旨在为固沙植被建设提供科学依据。[方法]利用野外大型称重式蒸渗仪于2014年6—9月底对单株油蒿的蒸腾过程进行连续观测,并同步监测了土壤含水量及相关气象因子。[结果]油蒿单日蒸腾强度曲线在晴天表现为双峰曲线,而在阴雨天双峰曲线不明显;研究期间,单株油蒿蒸腾耗水量为101.66mm,日平均蒸腾强度为0.83mm/d。蒸渗仪内土壤蒸发量106.05mm,日平均土壤蒸发强度为0.87mm/d,试验期间蒸散量占降雨量的82.98%。降雨可以维持油蒿正常生长,并对土壤水分进行一定补充;油蒿蒸腾强度与空气相对湿度(p0.01)、空气温度(p0.01)、太阳净辐射(p0.01)和20cm深度土壤体积含水量(p0.05)具有很好的相关性,且相关性依次减小。[结论]油蒿蒸腾耗水日变化明显,其蒸腾速率受土壤水分状况、气象条件及自身生理特征等因素的影响。  相似文献   
3.
Two soil–water balance models were tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge, and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin‐Dahlem, Germany. One model calculated the soil water balance using the Richards equation. The other one used a capacitance approach. Both models used the same modified Penman formula for the estimation of potential evapotranspiration and the same simple empirical vegetation model for the calculation of transpiration, interception, and evaporation. The comparisons of simulated with measured model outputs were analyzed using the modeling‐efficiency index IA and the root mean squared error RMSE. At some lysimeters, the uncalibrated application of both models led to an underestimation of cumulative and annual rates of groundwater recharge and capillary rise, despite a good simulation quality in terms of IA and RMSE. A calibration of soil‐hydraulic and vegetation parameters such as maximum rooting depth resulted in a better fit between simulated and observed cumulative and annual rates of groundwater recharge and capillary rise, but in some cases also decreased the simulation quality of both models in terms of IA and RMSE. The results of this calibration indicated that, in addition to a precise determination of the soil water‐retention functions, vegetation parameters such as rooting depth should also be observed. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.  相似文献   
4.
Evapotranspiration predictions of CERES-Sorghum model in Southern Italy   总被引:1,自引:0,他引:1  
The purpose of this study was to modify and calibrate the CERES-Sorghum water balance model for the dry, high radiation and windy conditions in an area in Southern Italy.

The equation for estimating potential evapotranspiration (E0) was substituted by another one, calibrated in the study site and expressed as a function of equilibrium evaporation and maximum vapour pressure deficit (defined as the difference between the saturation vapour pressure at maximum and at minimum temperatures).

To calibrate the E0 equation included in CERES-Sorghum, two drainage lysimeters, located at the Istituto Sperimentale Agronomico experimental farm, Foggia (Italy), were used to measure weekly evapotranspiration of well-watered, irrigated fescue grass, from 1976 to 1986.

A further drainage lysimeter, located in the same farm and cropped with well-watered grain sorghum (cv. NK 121) was used to calibrate the genetic coefficients input to the modified CERES-Sorghum model during the cropping seasons 1979 and 1980.

Simulated phenological dates (anthesis and maturity), grain yield, LAI, biomass and crop evapotranspiration were then compared with the measured ones in a fourth drainage lysimeter cropped with sorghum.

The modified model simulated grain yield accurately, but simulated daily evapotranspiration did not always match well the observed value, especially early in the crop cycle. Improvements are needed to the model in its simulation of soil evaporation and in the crop response function to temperature.  相似文献   

5.
6.
Accurate determination of evapotranspiration (ET) is useful to develop precise irrigation scheduling. Although eddy covariance (EC) is a direct method which is widely used to measure ET, its performance in arid region of northwest China is not clear. In this study, ET measured by EC (ETEC) was compared with that by large-scale weighing lysimeter (ETL) during the whole growing season of maize in 2009. Energy balance ratio was 0.84 for daytime fluxes, indicating that lack of energy balance closure occurred, so daytime ETEC was adjusted by Bowen-ratio forced closure method. Compared to the corresponding ETL, half-hourly daytime ETEC was underestimated by 21.8% without the adjustment and 4.8% with the adjustment. Furthermore, nighttime ETEC was adjusted using filtering/interpolation method. Mean error between half-hourly nighttime ETEC and ETL decreased from 30.2% without the adjustment to 10.3% with the adjustment. After such adjustment of day and night measurements, daily ETEC was underestimated by 6.2% compared to ETL. These results indicated that the adjusted ETEC well matched with the ETL. Moreover, the discrepancy of adjusted total ETEC and ETL was decreased to 3.2% after subtracting the overestimated ET by lysimeter resulting from irrigation and heavy rainfall events. Thus, after appropriate adjustments of observations, eddy covariance method is accurate in estimating maize ET in the arid region of northwest China.  相似文献   
7.
孙炳双  杨肖肖  杨维 《安徽农业科学》2013,(7):3063-3066,3131
应用模糊评判理论,以2010和2011年双台子河监测数据为研究对象,选择DO、CODCr、NH3-N、TP、TN、BOD5、氯化物7个评价因子,建立模糊评价模型,确定模糊关系矩阵,选择熵权赋权法求各评价因子权重,以最大隶属原理为评价类别,提出一种基于熵权赋权的方法,利用模糊变换对双台子河水质进行评价与分类。评价结果表明,从权重分析,主要污染因子为BOD5、TN、CODCr、TP,次要因子依次为NH3-N、DO、氯化物;由模糊向量大小分析,水质类别为Ⅳ、Ⅴ类;由模糊向量平均值分析,污染状况下游>中游>上游;并将评价结果与综合标识指数法对比,结果显示两种评价结果近乎一致,但模糊评判使评价结果更直观反映河流水质状况,评价结果更加合理准确。  相似文献   
8.
基于气象-生理的夏玉米作物系数及蒸散估算   总被引:1,自引:1,他引:0  
准确估算作物系数对预测作物实际蒸散量和制定精准的灌溉计划至关重要。为反映作物逐日作物系数变化,综合考虑气象和生物因子对作物生长的共同影响,采用五道沟水文实验站大型蒸渗仪夏玉米实测蒸散及气象数据,基于地温及叶面积指数建立了气象-生理双函数乘法模型,并结合梯度下降法对模型进行了精度优化。结果表明,在整个玉米生长期中,作物系数实测值和计算值平均绝对误差为0.12,均方根误差为0.15,相关性为0.91,蒸散量实测值与计算值平均绝对误差为1.0 mm/d,均方根误差为4.5 mm/d,相关性为0.75。该模型计算的全生育期蒸散量准确率(误差在2~3 mm/d以内)相比使用联合国粮农组织(FAO)推荐的作物系数计算所得准确率提高了3倍以上,可更精确用于作物系数及蒸散量计算。  相似文献   
9.
夏玉米日蒸发蒸腾量计算方法的试验研究   总被引:6,自引:1,他引:6  
根据实测资料,对波文比计算的蒸发蒸腾量和蒸渗仪实测的蒸发蒸腾量日变化进行比较及分析。结果表明,波文比所测蒸发蒸腾量与太阳净辐射的相关性比较好,薰渗仪所测值与太阳净辐射的相关性不明显。蒸发蒸腾量的日变化曲线呈单峰型,早晚小,中午大,夜间为负值。蒸渗仪受自身因素影响,变化比较敏感。两种方法计算平均值比较接近。波文比的计算值比蒸渗仪的测量值更能精确地反应短时段作物的蒸发蒸腾规律。  相似文献   
10.
根据植物的蒸腾机理与土壤的蒸发机制,利用生物膜技术,研制了参考蒸发蒸腾仪。该仪器可很好地模拟土壤蒸发与植物蒸腾的自然物理过程。从理论上对仪器直接测定法与Penman-Monteith法、蒸发皿法进行了对比分析。在应用试验上,利用蒸渗仪值对三种方法进行了校核,结果表明:仪器直接测定法的精度稍差于Penman-Monteith法,但较蒸发皿法有很大提高。仪器使用方便、维护简单、价格低廉,易为我国普遍存在的经济与文化水平不高的农民用户所接受,将有良好的商品化开发及广阔的市场应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号