首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   42篇
  国内免费   48篇
林业   21篇
农学   31篇
基础科学   3篇
  98篇
综合类   148篇
农作物   34篇
水产渔业   47篇
畜牧兽医   128篇
园艺   23篇
植物保护   103篇
  2024年   3篇
  2023年   13篇
  2022年   15篇
  2021年   19篇
  2020年   24篇
  2019年   36篇
  2018年   23篇
  2017年   23篇
  2016年   31篇
  2015年   22篇
  2014年   29篇
  2013年   34篇
  2012年   32篇
  2011年   41篇
  2010年   30篇
  2009年   32篇
  2008年   31篇
  2007年   31篇
  2006年   25篇
  2005年   10篇
  2004年   12篇
  2003年   14篇
  2002年   8篇
  2001年   12篇
  2000年   14篇
  1999年   11篇
  1998年   6篇
  1997年   12篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有636条查询结果,搜索用时 31 毫秒
1.
2.
To ascertain if active oxygen species play a role in fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris, the degree of lipid peroxidation (malondialdehyde formation) and the activity levels of diamine oxidase (DAO), an apoplastic H2O2-forming oxidase, and several antioxidant enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol-dependent peroxidase (GPX) and superoxide dismutase (SOD), were determined spectrophotometrically in roots and stems of ‘WR315’ (resistant) and ‘JG62’ (susceptible) chickpea cultivars inoculated with the highly virulent race 5 of the pathogen. Moreover, APX, CAT, GPX and SOD were also analysed in roots and stems by gel electrophoresis and activity staining; and the protein levels of APX and SOD in roots were determined by Western blotting. In roots, infection by the pathogen increased lipid peroxidation and CAT and SOD activities, although such responses occurred earlier in the incompatible compared with the compatible interactions. APX, GPX and GR activities were also increased in infected roots, but only in the compatible interaction. In stems, infection by the pathogen increased lipid peroxidation and APX, CAT, SOD and GPX activities only in the compatible interaction, and DAO activity only in the incompatible one. In general, electrophoregrams agreed with the activity levels determined spectrophotometrically and did not reveal any differences in isoenzyme patterns between cultivars or between infected and non-infected plants. Further, Western blots revealed an increase in the root protein levels of APX in the compatible interaction and in those of SOD in both compatible and incompatible interactions. In conclusion, whereas enhanced DAO activity in stems, and earlier increases in lipid peroxidation and CAT and SOD activities in roots, can be associated with resistance to fusarium wilt in chickpea, the induction of the latter three parameters in roots and stems along with that of APX, GR (only in roots) and GPX (only in stems) activities are rather more associated with the establishment of the compatible interaction.  相似文献   
3.
To characterize the biochemical differences in paraquat-resistant and -susceptible biotypes of Erigeron canadensis L. collected from Korea, we investigated the constitutive levels of various antioxidants such as antioxidant enzymes and low molecular weight antioxidants in leaves, as well as after paraquat treatment. The activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and catalase were higher in the paraquat-resistant biotype than in the paraquat-susceptible biotype. Reduced ascorbic acid content was higher in the resistant biotype, but the content of reduced glutathione was higher in the susceptible biotype. These results indicate that one of the paraquat-resistant mechanisms in E. canadensis in the present study might be related to protecting the activities of antioxidant enzymes, such as superoxide dismutase, peroxidase ascorbate peroxidase, and catalase, as well as the contents of low molecular weight antioxidants such as ascorbate and glutathione.  相似文献   
4.
The effects of exposure of human erythrocytes to different concentrations of Roundup Ultra 360 SL and its active compound glyphosate were studied. We studied hemolysis after 1, 5, and 24 h incubation; lipid peroxidation, hemoglobin oxidation, the level of reduced glutathione, and the activity of catalase after 1 h. Human erythrocytes were incubated with 100-1500 ppm (100 μg/ml erythrocytes at 5% hematocrite) Roundup Ultra 360 SL and glyphosate. We have found that after 1 h of incubation only Roundup Ultra 360 SL increased the level of methemoglobin, products of lipid peroxidation at 500 ppm and hemolysis at 1500 ppm [Curr. Top. Biophys. 26 (2002) 245], while its active compound glyphosate increased the level of methemoglobin and the level of lipid peroxidation at much higher dose—1000 ppm. At the same time hemolysis was observed to only at the highest dose of glyphosate (1500 ppm) and the longest time of incubation (24 h). Both Roundup Ultra 360 SL and glyphosate did not cause statistically significant changes in the level of GSH, but increased the activity of catalase. Roundup Ultra 360 SL provokes more changes in the function of erythrocytes than its active substance glyphosate, which is probably a result of the properties of additives. Taking into account the limited accumulation of Roundup Ultra 360 SL and glyphosate in the organism as well as the fact that the threshold doses which caused changes in erythrocytes for Roundup Ultra 360 SL were only 500 and 1000 ppm for glyphosate, one may conclude that this pesticide is safe towards human erythrocytes.  相似文献   
5.
The effects of various copper (Cu) concentrations on the antioxidative system in the roots of Medicago sativa were explored. The results indicated that the Cu content of the roots reached a value of 854 μg g?1 DW at 10 μm Cu and a value of 4415 μg g?1 DW at 100 μm Cu, suggesting that M. sativa has better ability to tolerate and accumulate Cu than other Cu‐bioaccumulators, and is a potential plant for phytoremediation. Treatment with Cu resulted in a significant increment in the levels of H2O2, O2˙? and OH˙. The reduced form of ascorbate and glutathione reached a peak at 30 μm Cu, and was followed by a sharp depletion to a lower level than that of the control. In contrast, the levels of the oxidised forms of ascorbate and glutathione showed a progressive increment with increasing Cu concentrations, suggesting that the antioxidant system was unable to cope with Cu stress at higher Cu levels. Under the Cu concentrations tested, the activity of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) increased at lower Cu concentrations, and then decreased, reaching a maximum at 30 μm of Cu for APX and GR, at 10 μm for CAT, whereas the activities of guaiacol peroxidase (POD, EC 1.11.1.7) were gradually increased with increasing Cu concentrations. PAGE analysis of superoxide dismutase (SOD, EC 1.1.5.1.1) revealed that one band is a Mn‐SOD and five bands are identified as Cu, Zn‐SOD, whereas Fe‐SOD isoforms were not found in the roots of alfalfa. Cu at 10–100 μm increased the intensity of constitutive isozymes of CAT, APX and POD, whereas it decreased the intensity of isozymes of glucose‐6‐phosphate dehydrogenase (G6PDH, EC 1.1.1.49) significantly. The activities of lipoxygenases (LOX, EC 1.13.11.12) were gradually augmented with increasing Cu concentrations, demonstrating that LOXs are probably involved in production of lipid hydroperoxides and superoxide anion. There was a continuous and pronounced enhancement in the activity of esterase (EST, EC 3.1.1.1) in roots treated with 10–30 Cu μm , whereas EST activity in roots exposed to above 30 μm Cu declined, suggesting that EST plays a protective role under lower Cu concentrations stress.  相似文献   
6.
The molecular basis for adaptations to extreme environments can now be understood by interrogating the ever-increasing number of sequenced genomes. Mammals such as cetaceans, bats, and highland species can protect themselves from oxidative stress, a disruption in the balance of reactive oxygen species, which results in oxidative injury and cell damage. Here, we consider the evolution of the glutathione peroxidase (GPX) family of antioxidant enzymes by interrogating publicly available genome data from 70 mammalian species from all major clades. We identified 8 GPX subclasses ubiquitous to all mammalian groups. Mammalian GPX gene families resolved into the GPX4/7/8 and GPX1/2/3/5/6 groups and are characterized by several instances of gene duplication and loss, indicating a dynamic process of gene birth and death in mammals. Seven of the eight GPX subfamilies (all but GPX7) were under positive selection, with the residues under selection located at or close to active sites or at the dimer interface. We also reveal evidence of a correlation between ecological niches (e.g. high oxidative stress) and the divergent selection and gene copy number of GPX subclasses. Notably, a convergent expansion of GPX1 was observed in several independent lineages of mammals under oxidative stress and may be important for avoiding oxidative damage. Collectively, this study suggests that the GPX gene family has shaped the adaption of mammals to stressful environments.  相似文献   
7.
The butyl ester of buthionine sulfoximine (BBSO) applied topically to the nymph V stage of Triatoma infestans (Klug) caused glutathione depletion which was maintained for four days after treatment. Topical pre-treatment of nymph V with BBSO significantly synergised the toxicity of DDT and fenitrothion to T. infestans.  相似文献   
8.
通过烟焦油对小鼠肝微粒体ANDM和GST的作用,探讨甘草、黄芪、五味子及绿茶的抗烟毒作用。采用钙沉淀法制备肝微粒体,Lowry法测定蛋白含量并测定小鼠肝微粒体中的ANDM、GST活性水平。结果表明,2%LD50(0.01 g/kg)的烟焦油可使小鼠肝脏中ANDM显著升高,对GST的影响不明显,经统计学检验差异无显著性(P>0.05)。大剂量甘草、黄芪、五味子及绿茶组可使焦油升高的ANDM明显降低,并明显升高GST活性,经统计学检验差异有显著性(P<0.01)。说明甘草、黄芪、五味子及绿茶有明显的抗烟毒作用。  相似文献   
9.
Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilization can help in dissecting the mechanisms underlying N uptake and utilization in legume-nonlegume intercropping systems.An experiment was performed with three planting patterns:monoculture maize(MM),monoculture soybean(SS),and maize-soybean relay intercropping(IMS),and three N application levels:zero N(NN),reduced N(RN),and conventional N(CN)to investigate crop N uptake and utilization characteristics.N recovery efficiency and 15N recovery rate of crops were higher under RN than under CN,and those under RN were higher under intercropping than under the corresponding monocultures.Compared with MM,IMS showed a lower soil N-dependent rate(SNDR)in 2012.However,the SNDR of MM rapidly declined from 86.8%in 2012 to 49.4%in 2014,whereas that of IMS declined slowly from 75.4%in 2012 to 69.4%in 2014.The interspecific N competition rate(NCRms)was higher under RN than under CN,and increased yearly.Soybean nodule dry weight and nitrogenase activities were respectively 34.2%and 12.5%higher under intercropping than in monoculture at the beginning seed stage.The amount(Ndfa)and ratio(%Ndfa)of soybean N2 fixation were significantly greater under IS than under SS.In conclusion,N fertilizer was more efficiently used under RN than under CN;in particular,the relay intercropping system promoted N fertilizer utilization in comparison with the corresponding monocultures.An intercropping system helps to maintain soil fertility because interspecific N competition promotes biological N fixation by soybean by reducing N input.Thus,a maize-soybean relay intercropping system with reduced N application is sustainable and environmentally friendly.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号