首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   2篇
  国内免费   1篇
林业   1篇
基础科学   3篇
  85篇
综合类   9篇
农作物   2篇
园艺   1篇
  2022年   1篇
  2019年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   12篇
  2008年   5篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   12篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
排序方式: 共有101条查询结果,搜索用时 265 毫秒
1.
履带式拖拉机和轮式拖拉机由于其走行机构的不同,其集材道土壤压实也存在差异,特别衡量土壤压实的两个重要指标——土壤硬度和孔隙度——两种机型不一致。通过对调查测定数据进行计算处理以及用灰色系统理论进行动态分析,结果表明:与轮式拖拉机相比,履带式拖拉机对苗木生长是有利的。  相似文献   
2.
A potentially significant cause of damage to grassland soils is compaction of unsaturated soil and poaching of saturated or nearly saturated soil by animal hooves. Damage is caused when an applied stress is in excess of the bearing strength of the soil and results in a loss of soil structure, macroporosity and air or water conductivity. Severely damaged soils can cause reduced grassland productivity and make grazing management very difficult for the farmer. The actual amount of soil damage that can occur during grazing is dependent on the grass cover which acts as a protecting layer, the soil water content and the characteristics of the grazing animal (weight and hoof size). Assuming that the farmer is knowledgeable about the characteristics of the grazing animal and grass cover, it would be very useful for short‐term operational farm planning to be able to predict when soil water contents were likely to be in a critical range with respect to potential hoof damage. In this study soil moisture deficits (SMDs) which can be derived from meteorological forecasts are evaluated for predicting when soil water conditions are likely to lead to hoof damage. Two contrasting Irish grassland soils were analysed using a Hounsfield servo‐mechanical vertical testing machine to simulate static (285.4 N) and dynamic (571 N) hoof loads on the soil over a range of estimated SMDs (0, 5, 10 and 20 mm). The deficits were analysed with respect to the soil volumetric water content, compression (displacement) and change in dry bulk density. The SMDs imposed in the laboratory were similar to those under field conditions and thus the methods used in this study are applicable elsewhere. The change in dry bulk density following loading (0.2–0.7 g/cm3) was linearly related to SMD (R2 ranged from 0.90 to 0.99), leading to the conclusion that a forecast of SMD can be used to predict when grassland soils are likely to be at risk of damage from grazing.  相似文献   
3.
Application of urban refuse compost to agricultural soil could help to solve municipalities' problems related to the increasing production of waste only if soil property improvement and environmental conservation can be demonstrated. The use of low-pressure tractor tyres is another proposal in modern agriculture for reducing soil compaction. This study thus aimed to detect the effects of both compost and low-pressure tractor tyres on soil loss, runoff, aggregate stability, bulk density, penetrometer resistance and maize (Zea mays L.) yield. A 3-year field experiment was carried out on a hilly (15% slope) clay loam soil in central Italy. Twelve plots (200 m2 each) were monitored with tipping-pot devices for runoff and soil erosion measurement. Treatments were: compost addition (64 Mg ha−1), mineral fertilisation, use of low-pressure tyres, use of traditional tyres, with three replicates, in a fully randomised block design. Compost was applied once at the beginning of the experiment. Runoff reduction due to compost ranged between 7 and 399 m3 ha−1 during seasons, while soil erosion was reduced between 0.2 and 2.4 Mg ha−1. Mean weight diameter (MWD) of stable aggregates, measured on wheel tracks, increased by 2.19 mm, then progressively decreased. Compost significantly increased bulk density by 0.08 Mg m−3 due to its inert fraction content. This effect was less evident in the second and third year, probably due to harrowing. Maize yields were slightly, but significantly, reduced in composted plots by 1.72 Mg ha−1 in the third year. Low-pressure tyres significantly reduced soil loss in the third year by 1 Mg ha−1. Furthermore, they did not significantly influence runoff volumes and soil structural stability. Low-pressure tyres or compost addition were singly able to prevent an increase in penetrometer resistance due to agricultural machinery traffic. Low-pressure tyres increased the maize yield during the 3 years and the difference (0.4 Mg ha−1) became significant in the third year. In conclusion, results show the positive lasting effect of compost in ameliorating soil physical properties and reducing runoff and soil erosion. Low-pressure tyres appear justifiable both for the observed increase of grain production and reduction of soil compaction. This latter effect is, nevertheless, masked by compost addition which is also able to reduce penetrometer resistance. Further research is required to explain the causes of the slight inhibition of grain yield observed when compost was compared with mineral fertilisation.  相似文献   
4.
城市土壤的压实退化及其环境效应   总被引:17,自引:2,他引:17  
城市土壤普遍存在严重的压实退化现象。由于压实的影响,土壤物理性质发生了显著的改变:结构破坏、容重和硬度增大、孔隙度和渗透性降低。这些重要的变化对土壤生物活动、土壤物理-化学平衡和氧化还原状况、土壤的过滤和缓冲性能都产生影响。由此对环境产生严重的负面效应:地下水的自然回灌减少,地表径流量增加,降雨的径流洪峰加快、加大,地表水体的污染负荷增加。土壤温度、微生物活动、养分转化都不同于自然土壤,植物的生长也受到严重的影响。  相似文献   
5.
In recent years, agricultural land in Switzerland has been increasingly used as temporary access ways for heavy machinery in road and pipeline construction operations. The Swiss soil protection law requires that measures are taken to prevent soil compaction in such operations, but gives no criteria to determine tolerable loads. We studied the compaction sensitivity of a loess soil (Haplic Luvisol) at different soil moisture conditions in a field traffic experiment and by a numerical model on the computer using finite element analysis. Two plots, one wetted by sprinkling and one left dry (no sprinkling), were traversed by heavy caterpillar vehicles during construction of a large overland gas pipeline. Compaction effects were determined by comparing precompression stresses of samples taken from trafficked and non-trafficked soil. A finite element model with a constitutive relation, based on the concept of critical state soil mechanics, was used to interpret the outcome of the field trials.

We found significantly higher precompression stresses in the trafficked (median 97 kPa) compared with the non-trafficked (median 41 kPa) topsoil of the wet plot. No effect was evident in the topsoil of the dry plot as well as in the subsoils of the wet and the dry plot. The observed compaction effects were in agreement with the model predictions if the soil was assumed to be partially drained, but disagreed for the wet subsoil if fully drained conditions were assumed. Agreement between model and experimental results also required that the moisture dependence of the precompression stress was taken into account.  相似文献   

6.
7.
Based on experience from 35 years of tillage research in Sweden, future development of soil tillage is discussed and some research problems are identified. Tillage and seeding methods must be more carefully adapted to conditions at individual sites and occasions. Low-pressure typres, better weed control and improved seed coulters favour the increased use of reduced tillage. In order to diminish the impact of agriculture on the environment, it is necessary to develop methods for establishment of crops in the early spring or immediately after harvest, even in soils with large amounts of crop residues or high moisture content. The roles of tillage methods, and of soil compaction and structure on environmental impact of agriculture must be investigated. World food production must increase, since the world population is rapidly increasing. Therefore, it is necessary to develop improved crop production systems, including crop establishment systems, which favour efficient use of basic crop growth factors, while protecting or increasing soil productivity. Compaction, decreased organic matter content, and erosion are important long-term threats to soil productivity.  相似文献   
8.
The level of compaction induced on cultivated fields through trafficking is strongly influenced by the prevailing soil-water status and, depending on the attendant soil degradation, vital soil hydraulic processes could be affected. Therefore, understanding the relationship between field soil-water status and the corresponding level of induced compaction for a given load is considered an imperative step toward a better control of the occurrence of traffic-induced field soil compaction. Pore size distribution, a fundamental and highly degradable soil property, was measured in a Rhodic Ferralsol, the most productive and extensively distributed soil in Western Cuba, to study the effects of three levels of soil compaction on soil water characteristic parameters. Soil bulk density and cone penetration index were used to measure compaction levels established by seven passes of a 10 Mg tractor at three soil-water statuses corresponding to the plastic (Fs), friable (Fc) and relatively dry soil (Ds) consistency states. Pore size distribution calculated from soil water characteristic curves was classified into three pore size categories on the basis of their hydraulic functioning: >50 μm (f>50 μm), 50–0.5 μm (f50–0.5 μm) and <0.5 μm (f<0.5 μm). The greatest compaction levels were attained in the Fs and Fc soil water treatments, and a significant contribution to compaction was attributed to the existing soil water states under which the soil compaction was accomplished. Average cone index (CI) values in the range of 2.93–3.70 MPa reflected the accumulation of f<0.5 μm pores, and incurred severe reductions in the volume of f>50 μm pores in the Fs and Fc treatments, while an average CI value of 1.69 MPa indicated increments in the volume of f50–0.5 μm in the Ds treatment. Despite the differential effects of soil compaction on the distribution of the different pore size categories, soil total porosity (fTotal) was not effective in reflecting treatment effects. Soil water desorption at the soil water potentials evaluated (0.0 to −15,000 cm H2O) was adversely affected in the f<0.5 μm dominated treatments; strong soil water retention was observed with the predominance of f<0.5 μm, as was confirmed by the high water content at plant wilting point. Based on these findings, the use of field capacity water content as the upper limit of plant available soil water was therefore considered inappropriate for compacted soils.  相似文献   
9.
The effects of wheel traffic on soil surface hydraulic properties, and consequent effects on erosion, following planting of vegetable crops in beds have not been widely studied. This paper describes two trials to quantify how wheel tracks influence infiltration and erosion rates, and assesses the value of cultivating wheel tracks for reducing erosion. The trials were carried out under natural rainfall, on Dystric Nitosols with clay loam texture and strong, stable structure. Net rates of erosion from onion (Allium cepa L.) beds with cultivated or uncultivated inter-bed wheel tracks were measured with erosion pins and repeat topographic surveys of sediment trapped in silt fences. Infiltration rates in onion beds, cultivated and uncultivated wheel tracks, and changes in infiltration rates through winter, spring, and summer, were measured using the double-ring, ponded-water method.

Differences in erosion rate were only measured in the second trial in which erosion rate from the uncultivated treatment was 21 Mg ha−1, compared to 1 Mg ha−1 for the cultivated treatment. Erosion occurred through mobilisation of soil along the edge and base of the wheel tracks, with no evidence of erosion of the onion beds. Most of the eroded soil comprised soil aggregates, with 75% between 0.25 and 4 mm in diameter, suggesting soil was transported in runoff along the wheel tracks as stable aggregates. Uncultivated wheel tracks had very low infiltration rates compared to onion beds and cultivated wheel tracks. The differences in infiltration rates between cultivated and uncultivated wheel tracks were consistent in both trials, with minor differences due to rainfall patterns and the implements used to cultivate wheel tracks. There were clear trends in infiltration rates through time, with rates in the uncultivated wheel tracks increasing during the growing season from 1.4×10−7 to 2.1×10−5 ms−1 and in onion beds from 1.1×10−4 to 2.5×10−4 ms−1, while rates in the cultivated wheel tracks decreased from 1.7×10−2 to 2.4×10−3 ms−1. The major increase of infiltration rate in uncultivated wheel tracks occurred after October when the soil surface began to dry out, and frequent wetting and drying cycles caused the compacted surface soil to crack. Most erosion occurred in the winter/early spring period when storm frequency and rainfall intensity was highest, and infiltration rates in the uncultivated wheel tracks lowest. Cultivating wheel tracks is a simple and effective practice to increase infiltration of rainfall and reduce erosion rates on clay-rich, strongly structured soils.  相似文献   

10.
Soil compaction affects hydraulic properties, and thus can lead to soil degradation and other adverse effects on environmental quality. This study evaluates the effects of three levels of compaction on the hydraulic properties of two silty loam soils from the Loess Plateau, China. Undisturbed soil cores were collected from the surface (0–5 cm) and subsurface (10–15 cm) layers at sites in Mizhi and Heyang in Shaanxi Province. The three levels of soil compaction were set by increasing soil bulk density by 0% (C0), 10% (C1) and 20% (C2) through compression and hammering in the laboratory. Soil water retention curves were then determined, and both saturated hydraulic conductivity (Ks) and unsaturated hydraulic conductivity were estimated for all of the samples using standard suction apparatus, a constant head method and the hot-air method, respectively. The high level of compaction (C2) significantly changed the water retention curves of both the surface and subsurface layers of the Heyang soil, and both levels of compaction (C1 and C2) changed the curves of the two layers from the Mizhi site. However, the effects of compaction on the two soils were only pronounced below water tensions of 100 kPa. Saturated hydraulic conductivities (Ks) were significantly reduced by the highest compaction level for both sampled layers of the Heyang soil, but no difference was observed in this respect between the C0 and C1 treatments. Ks values decreased with increasing soil compaction for both layers of the Mizhi soil. Unsaturated hydraulic conductivities were not affected by soil compaction levels in the measured water volume ratio range, and the values obtained were two to five orders of magnitude higher for the Mizhi soil than for the Heyang soil. The results indicate that soil compaction could strongly influence, in different ways, the hydraulic properties of the two soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号