首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   33篇
  国内免费   15篇
农学   44篇
基础科学   1篇
  13篇
综合类   46篇
农作物   170篇
园艺   2篇
植物保护   1篇
  2024年   1篇
  2023年   3篇
  2021年   1篇
  2020年   14篇
  2019年   3篇
  2018年   5篇
  2017年   17篇
  2016年   11篇
  2015年   5篇
  2014年   13篇
  2013年   24篇
  2012年   21篇
  2011年   18篇
  2010年   20篇
  2009年   15篇
  2008年   28篇
  2007年   13篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   10篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
1.
    
Sodium chloride (NaCl) is an essential ingredient to control the functional properties of wheat dough and bread quality. This study investigated the effect of NaCl at 0, 1 and 2%, (w/w, flour base) on the gluten network formation during dough development, the dough rheology, and the baking characteristics of two commercial flours containing different levels of protein (9.0 and 13.5%) and with different glutenin-to-gliadin ratios. Examination of the dough structure by confocal microscopy at different stages of mixing show that the gluten network formation was delayed and the formation of elongated fibril protein structure at the end of dough development when NaCl was used. The fibril structure of protein influenced the dough strength, as determined by strain hardening coefficient and hardening index obtained from the large deformation extension measurements. NaCl had a greater effect on enhancing the strength of dough prepared from the low protein flour compared to those from the high protein flour. The effect of NaCl on loaf volume and crumb structure of bread followed a similar trend. These results indicate that the effect of NaCl on dough strength and bread quality may be partially compensated by choosing flour with an appropriate amount and quality of gluten protein.  相似文献   
2.
    
Effect of heat-moisture treatment on quality properties of two bread wheats (cvs. Tosunbey and Bayraktar) were investigated by using response surface methodology (RSM). Temperature and moisture conditions in the experimental design were in the range of 55–95 °C and 13–19%. Heat-moisture treated grains were milled into flour and quality properties were determined. The optimum moisture-temperature combination for the highest dry gluten, Zeleny sedimentation, Alveograph W and bread volume values were estimated as 14%-63 °C for Tosunbey and 19%-55 °C for Bayraktar samples. Alveograph W seems to be a good indicator of baking quality for wheats treated at higher temperatures. In order to describe the relationship between the dependent and independent variables (moisture, temperature), the response values were fitted by second order polynomial models. Significance analysis showed that the effect of both moisture and temperature on dry gluten content, sedimentation and falling number values for Tosunbey; falling number and damaged starch values for Bayraktar were significant (p < 0.05). The effect of temperature on Farinograph water absorption, W and P/G, bread volume and firmness values were significant for both cultivars (p < 0.05). It can be concluded that improvement in baking quality can be achieved and flours with different properties can be produced by heat-moisture treatments on wheat.  相似文献   
3.
    
Celiac disease (CD) is caused by ingestion of wheat gluten proteins, due to immune response to proline- and glutamine-rich sequences. In this study, for reduction of the immune recognition, gluten proteins were enzymatically modified by binding methionine to the amino lateral groups of glutamine residues. Additionally, a bread-making process with modified gluten was assayed. The methionine binding was monitored by measuring the alpha-amino group disappearance and reduction of celiac IgA immunoreactivity. The best methionine binding was after 60 min reaction at pH 10, inducing a reduced to null IgA immunoreactivity to prolamins extracted from modified gluten. The bread prepared with modified gluten had lower specific volume (3.86 cm3/g) than the control wheat bread (4.52 cm3/g) but higher than those reported for gluten-free loaves. The preserved functionality of gluten proteins will make it feasible to apply this kind of modification in different wheat-based foodstuffs like the assayed bread in this study.  相似文献   
4.
Gluten is a fundamental component for the overall quality and structure of breads. The replacement of the gluten network in the development of gluten-free cereal products is a challenging task for the cereal technologist. The functionality of proteins from gluten-free flours could be modified in order to improve their baking characteristics by promoting protein networks. Transglutaminase (TGase) has been successfully used in food systems to promote protein cross-linking. In this study, TGase was investigated for network forming potential on flours from six different gluten-free cereals (brown rice, buckwheat, corn, oat, sorghum and teff) used in breadmaking. TGase was added at 0, 1 or 10 U/g of proteins present in the recipe. The effect of TGase on batters and breads was evaluated by fundamental rheological tests, Texture Profile Analysis and standard baking tests. Three-dimensional elaborations of Confocal Laser Scanning Microscopy (CLSM) images were performed on both batters and breads to evaluate the influence of TGase on microstructure. Fundamental rheological tests showed a significant increase in the pseudoplastic behaviour of buckwheat and brown rice batters when 10 U of TGase were used. The resulting buckwheat and brown rice breads showed improved baking characteristics as well as overall macroscopic appearance. Three-dimensional CLSM image elaborations confirmed the formation of protein complexes by TGase action. On the other side, TGase showed negative effects on corn flour as its application was detrimental for the elastic properties of the batters. Nevertheless, the resulting breads showed significant improvements in terms of increased specific volume and decreased crumb hardness and chewiness. Under the conditions of this study, no effects of TGase could be observed on breads from oat, sorghum or teff. Overall, the results of this study show that TGase can be successfully applied to gluten-free flours to improve their breadmaking potentials by promoting network formation. However, the protein source is a key element determining the impact of the enzyme.  相似文献   
5.
Psathyrostachys huashanica Keng ex Kuo (2n = 2x = 14, NsNs), a source of wheat stripe rust, take-all fungus, and powdery mildew resistance with tolerance to salinity and drought, has been successfully hybridized as the pollen parent to bread wheat without using immature embryo rescuing culture for the first time. All of the CSph2b × P. huashanica hybrid seeds germinate well. Backcross derivatives were successfully obtained. F1 hybrids were verified as intergeneric hybrids on the basis of morphological observation, cytological and molecular analyses. The results obviously showed the phenotypes of the hybrid plants were intermediate between bread wheat and P. huashanica. Chromosome pairing at MI of PMCs in the F1 hybrid plants was low, and the meiotic configuration was 26.80 I + 0.60 II (rod). Cytological analysis of the hybrid plants revealed the ineffectiveness of the ph2b gene on chromosome association between the parents. Eight RAPD-specific markers for Ns genome were selected for RAPD analysis, and the results indicated that F1 hybrids contained the Ns genome of P. huashanica. Furthermore, the significance of the finding for bread wheat improvement was discussed.  相似文献   
6.
Improving the level and stability of grain yield is the primary objective of wheat breeding programs in the Eastern Gangetic Plains (EGP) of South Asia. A regional wheat trial, the Eastern Gangetic Plains Yield Trial (EGPYT), was initiated by CIMMYT in collaboration with national wheat research programs in Bangladesh, Nepal, and India in 1999–2000 to identify wheat genotypes with high and stable grain yield, disease resistance, and superior agronomic traits for the EGP region. A set of 21 wheat experimental genotypes selected from a regional wheat screening nursery in South Asia, three improved widely grown cultivars (Kanchan, PBW343 and Bhrikuti), and one long-term cultivar (Sonalika) were tested at 9–11 sites in six wheat growing seasons (2000–2005) in the EGP. The 21 experimental genotypes were different in each year, whereas the four check cultivars were common. In each year, one or more of the experimental genotypes showed high and stable grain yield and acceptable maturity, plant height, and disease resistance compared to the check cultivars. Three improved cultivars have already been commercially released in the region through EGPYT and many germplasm lines have been used in the breeding programs as parents. Identification of wheat genotypes with high-grain yield in individual sites and high and stable yield across the EGP region underlines their value for regional wheat breeding programs attempting to improve grain yield and agronomic performance.  相似文献   
7.
    
  相似文献   
8.
    
Spelt wheat, Triticum spelta L., has been proved to be rich-sources of useful genes for tolerance to biotic and abiotic stress, and grain quality. But this crop plant has some undesirable traits including glume tenacity and brittle rachis. Free-threshing and reduced fragility of rachis are very important traits for cultivation. The objectives in the present study were to investigate genetic variation of rachis fragility in a wide range of spelt accessions, to examine its genetic segregation pattern, and to clarify if rachis fragility is associated with dosage of chromosome 5A in aneuploid lines of bread wheat. The results demonstrated that spelt germplasm contains a wide range of rachis toughness, and thus selection of spelt wheat with desirable characteristics combined with an appropriate level of tough rachis would be possible. Spike morphology in the F2 plants was segregated into the three types, square-headed, speltoid, and compactoid. The F2 plants with compactoid spikes had the most brittle rachis, followed by the speltoid and square-headed spike F2 plants. Rachis fragility in bread wheat also had genetic variation and was associated with dosage of chromosome 5A.  相似文献   
9.
Bread with 48.5% soy ingredients was assessed for quality during frozen storage of the dough. Soy protein was hypothesized to prevent water migration during frozen storage, thereby producing dough that would exhibit fewer structural changes than traditional wheat bread. Wheat and soy bread were baked from dough that was fresh or frozen (−20 °C, 2 or 4 wks). Dough and bread were assessed for physical properties including moisture content, percent “freezable” and “unfreezable” water, dough extensibility, and bread texture. The bread was subjected to an untrained sensory panel. The soy bread was denser, chewier, and had a higher moisture content than wheat bread. When baked from fresh or frozen dough, soy bread was rated “moderately acceptable” or higher by 70% of panelists. Soy minimized changes in dough extensibility and resistive force to extension, leading to minimal changes in bread hardness. Although consumers could distinguish between bread baked from soy dough that was fresh or frozen for 4 wks, sensorial and textural data suggested that the rate at which the quality of the soy dough deteriorated was slower than that of wheat dough. In conclusion, the dough of consumer-acceptable soy bread retained quality characteristics during frozen storage slightly better than wheat dough.  相似文献   
10.
    
In Poland bread as a staple food both made from wheat and rye flour can be a potential product for future fortification with folic acid. The objective of the study was to examine the effect of fermentation and baking on added folic acid and some endogenous folates stability during breadmaking of rye and wheat breads. Breads were produced using the formulation containing enriched flour with 0.2 mg folic acid/100 g product, baker’s yeast and additionally ascorbic acid for wheat bread and lactic acid for rye bread. Folates were extracted with Hepes/Ches buffer (pH = 7.85) followed by destruction of matrix by amylase and protease and deconjugation with rat serum conjugase. Affinity chromatography (FBP bovine milk) was used to purify and concentrate samples. The folates were separated by HPLC with C18 column and with a combination of fluorescence and UV detection. For both rye and wheat breads there was a decrease of folic acid from flour to bread stage. The total losses depend on baking process and ranged from 12 to 21%. Some changes in the level of different native folate forms during the stage of baking process were also observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号