首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
农作物   1篇
  2022年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Degradation of chitin, which is an aminopolysaccharide used as a soil amendment, has been often monitored in soil via its degradation products such as carbon dioxide and ammonium. We report here the applicability of thermogravimetry to measure the amount of chitin added to soil. The maximum pyrolysis rate of the upland surface soil of Brown Forest soil supplemented with chitin was strongly correlated with added chitin content (r = 0.999) when the content exceeded 6.0 g kg?1. The maximum pyrolysis rates of chitin-added soil (around 385°C) was distinctive from those of soil supplemented with cellulose, chitosan, N-acetylglucosamine, and N,N’-diacetylchitobiose (around 340°C, 300°C, 200°C, and 240°C, respectively), indicating the specific detection of chitin. Soil incubation study demonstrated that 60 g kg?1 chitin added to the soil declined exponentially (r = 0.993) within days and could not be detected at 90 days after the addition of chitin. Total carbon (C) content also decreased within days whereas total nitrogen (N) remained almost constant over the 90 days. The amount of ammonium-N increased in the initial 30 days after the addition of chitin and reached about 3.6 g kg?1, which corresponded to the amount of N in the added chitin (4.1 g kg?1) while the amount of nitrite-N and nitrate-N were below 2.0 and 15 mg kg?1, respectively. Comparison of the measured ammonium-N and total-C contents with those calculated from the measured chitin-content implied that addition of chitin enhanced degradation of native organic compounds in soil.  相似文献   
2.
Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45–50 °C and pH optima of 7.0–7.5. They are all stable at 40 °C and in the pH range of 5.0–11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号