首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   26篇
  国内免费   36篇
林业   11篇
农学   61篇
基础科学   2篇
  29篇
综合类   256篇
农作物   34篇
水产渔业   20篇
畜牧兽医   84篇
园艺   19篇
植物保护   11篇
  2024年   5篇
  2023年   20篇
  2022年   19篇
  2021年   24篇
  2020年   17篇
  2019年   24篇
  2018年   9篇
  2017年   24篇
  2016年   25篇
  2015年   24篇
  2014年   26篇
  2013年   31篇
  2012年   40篇
  2011年   50篇
  2010年   25篇
  2009年   27篇
  2008年   19篇
  2007年   22篇
  2006年   25篇
  2005年   14篇
  2004年   16篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1955年   1篇
排序方式: 共有527条查询结果,搜索用时 15 毫秒
1.
腺苷酸激活蛋白激酶(AMPK)是一种在真核细胞生物中广泛存在的丝氨酸/苏氨酸蛋白激酶,作为细胞内最重要的能量感受器,AMPK在细胞生长、繁殖、维持机体能量平衡以及细胞代谢过程中发挥重要的调节作用。AMPK活化主要受细胞内一磷酸腺苷/三磷酸腺苷(AMP/ATP)水平及肝激酶B1、钙调素依赖蛋白激酶活性等因素的影响;在动物处于营养缺乏、热应激、氧化应激等环境中,AMPK通路能做出适应性调整,以降低应激环境对动物的负面影响。本文对AMPK的结构、活性调节以及对处于应激环境中的动物能量代谢的调节进行综述,为缓解畜禽各种应激综合征提供理论参考。  相似文献   
2.
腺苷5'-磷酰硫酸激酶(APSK)催化APS磷酸化生成3'-磷酸-腺苷5'-磷酰硫酸(PAPS),PAPS进一步作为硫酸根供体参与胞内的硫酸化反应。因此,在这些生物体中,APS激酶是硫酸盐同化的重要组成部分。介绍APS激酶的结构、功能、作用机制,综述植物APS激酶当前的研究进展。  相似文献   
3.
草莓成熟过程中NAD激酶、NADP磷酸酶活性   总被引:1,自引:1,他引:1  
 研究了‘春星’草莓果实成熟时NAD 激酶、NADP 磷酸酶活性及NAD 激酶部分特性。结果表明, NAD 激酶和NADP 磷酸酶活性在果实绿色期到乳白期升高, 粉红期下降, 全红期又再次升高。NAD 激酶可被Ca2+ 强烈抑制, 被EGTA (Ca2+专一性螯合剂) 激活。随着成熟进程, NAD 激酶对ATP 的依赖性增加。  相似文献   
4.
保加利亚乳杆菌凭借其微生物特性和效能优异等特点成为当下产乳酸最重要的微生物菌株之一。乙酸是保加利亚乳杆菌代谢乳酸最主要的副产物,它的大量生成降低葡萄糖的代谢利用率,并且消耗了能量。乙酸激酶是控制乙酸生成的关键酶,敲除乙酸激酶基因,理论上可以阻断戊糖磷酸途径中乙酸的生成,从而优化代谢途径提高葡萄糖代谢乳酸的利用率。研究以Lactobacillus delbrueckii subsp.bulgaricus ATCC 11842公布的乙酸激酶基因ack序列设计引物,以保加利亚乳杆菌基因组DNA为模板,PCR克隆出ack上下游片段,利用重叠PCR技术将上下游片段拼接在一起,并连入具有温敏性的p Ghost4载体。  相似文献   
5.
通过RT-PCR获得一个编码棉花丝氨酸/苏氨酸激酶类似蛋白全长的cDNA片段,其编码的氨基酸序列与拟南芥ATPK3的相似度达到82%,这个基因暂被命名为GhPK1。基因全编码区包括1038个核苷酸,编码346个氨基酸的蛋白。GhPK1的编码产物在265~270个氨基酸处有一个跨膜区并可能结合在内质网膜上。GhPK1在种子和纤维中的表达水平较其它组织高。另外,GhPK1的表达量在受到盐胁迫后上升,说明GhPK1可能参与了盐胁迫反应。  相似文献   
6.
磷酸丙糖异构酶(Tpi)和丙酮酸激酶(PK)是滑液囊支原体(MS)进行糖酵解的关键酶,牛支原体和鸡毒支原体的Tpi(tpiA基因编码)和PK(pyk基因编码)位于细胞膜和细胞质上,参与对宿主细胞的粘附,而MS的tpiA和pyk分别编码Tpi和Pyk,目前尚未见相关研究。本研究首先对临床分离的MS分离株的生长特性进行研究,然后使用OverlapPCR对tpiA和pyk进行点突变扩增,分别将其克隆至pET-28a载体并在BL21(DE3)中表达,用获得的TpiA和Pyk蛋白免疫新西兰兔制备多克隆抗体。结果表明:分离的MS分离株(MS-SD2020)最高生长滴定为109,在生长60 h时达到最高滴定;对tpiA和pyk的序列进行分析表明,其在不同MS中高度保守,并成功表达大小分别为35.28和63.36 kDa的TpiA和Pyk重组蛋白,免疫后制备的兔多克隆抗体效价分别为32 000和2 048 000,本研究为后续开展MS的TpiA和Pyk功能研究提供参考。  相似文献   
7.
为探究水稻磷酸核酮糖激酶基因OsPRK在水稻诱导抗虫反应中的功能,以水稻秀水110为材料克隆OsPRK基因的全长,通过生物信息学软件分析其序列特征,并应用实时荧光定量PCR技术分析OsPRK基因在水稻不同组织中的分布情况以及在虫害诱导、激素和机械损伤处理水稻中的表达特征。结果显示,水稻OsPRK基因序列全长为1 212 bp,编码403个氨基酸,分子量为44.86 kD,具有1个磷酸核酮糖激酶保守结构域。OsPRK蛋白亚细胞定位结果显示其定位于叶绿体。OsPRK基因在水稻中的表达具有组织特异性,其在内叶、外叶、内叶鞘、外叶鞘和根系这5个组织中相对于内参基因ACTIN的表达量分别为35.83、20.53、6.25、3.21和0.03。与对照相比,二化螟Chilo suppressalis为害能够强烈抑制水稻茎秆中OsPRK基因的表达;褐飞虱Nilaparvata lugens怀卵雌成虫为害1.5、24 h、白背飞虱Sogatella furcifera怀卵雌成虫为害1、8、24 h以及机械损伤处理3、6、24 h均能显著诱导水稻茎秆中OsPRK基因的表达;而OsPRK基因的表达量在茉莉酸处理6、12 h时以及水杨酸处理0.5、1.5 h时被显著抑制,在茉莉酸处理48 h和水杨酸处理24 h时被显著诱导。表明OsPRK基因可能参与了水稻对害虫的诱导防御反应。  相似文献   
8.
为了改善纳豆的风味和口感,提高其可食用性,通过优化纳豆芽孢杆菌与酿酒酵母混合发酵工艺,降低纳豆的氨腥味;在此基础上,利用单因素试验和响应面法对纳豆固态发酵条件进行优化。确定纳豆固态发酵的最优条件为:混合菌种比例为3∶1,大豆含水量为60%,大豆的铺层厚度为3 cm,高温蒸煮30 min,接种量6%,发酵温度35℃,发酵时间28 h,后熟1 d,此条件下,挥发性盐基氮含量降低了40.1%,纳豆激酶活力提高了39.1%,纳豆的风味和口感均得到提升,更适合我国居民食用。  相似文献   
9.
利用RT-PCR和RACE技术获得了斜纹夜蛾精氨酸激酶基因的全长cDNA,命名为SlAK,其GenBank登录号为HQ840714。序列分析结果表明:该cDNA全长1373 bp,其中5′和3′UTR的长度分别为65和240 bp;其开放阅读框位于66~1133 bp,编码355个氨基酸。同源性分析结果显示,精氨酸激酶基因蛋白序列享有较高的同源性,该序列具有精氨酸激酶典型的酶活性部位氨基酸序列CPTNLGT、酶活性位点氨基酸和能形成离子耦合结构的氨基酸。SlAK基因在斜纹夜蛾幼虫的头部、中肠、脂肪体和体壁内均有表达,以在中肠内的表达水平最高;SlAK基因在斜纹夜蛾幼虫不同发育期的表达量不同,mRNA表达水平在3龄达到最高峰。  相似文献   
10.
《林业科学》2021,57(6)
【目的】通过研究氟离子和碳酸氢根添加对构树幼苗生长和碳代谢的影响,探讨喀斯特生态区域内的氟离子对植物光合作用和糖代谢过程的影响机制,以期为氟富集地区的森林植被管理和修复提供理论依据。【方法】以喀斯特适生植物构树幼苗为研究对象,通过在Hoagland营养液中加入Na F和Na HCO_3制成处理液。试验共设置4个处理组,即对照组、3 mmol·L~(-1)Na F处理组、3 mmol·L~(-1)Na HCO_3处理组和3 mmol·L~(-1)Na F+3 mmol·L~(-1)Na HCO_3处理组。测定构树幼苗在处理条件下的生长指标、光合指标、磷酸果糖激酶(PFK)活性、葡萄糖-6-磷酸脱氢酶(G6PDH)活性和碳酸酐酶(CA)活性。【结果】1) F~-添加显著抑制了构树幼苗的生长和光合能力,并且使葡萄糖代谢从糖酵解途径转移到磷酸戊糖途径。在不同时添加HCO_3~-的情况下,F~-对叶片内的CA酶活性不产生显著影响,但在同时添加HCO_3~-时,F~-显著抑制叶片内的CA酶活性。2)根际HCO_3~-添加能够显著促进构树幼苗的生长和光合能力,提高葡萄糖代谢总量和CA酶活性。而同时添加F~-能抑制HCO_3~-添加对植株产生的正面效应,使植株的生长、光合、葡萄糖代谢总量都显著下降,而G6PDH酶活性显著上升。【结论】环境中较高浓度的F~-能够显著抑制构树的生长,具体体现在对光合过程的抑制和把过多的糖代谢底物分配到PPP途径上。而在根际添加适量的HCO_3~-能够为植株的生长提供额外的光合代谢底物,提高植株的糖代谢水平,从而对植物的抗逆性和生长都产生有利的影响。在同时添加HCO_3~-和F~-条件下,HCO_3~-对植物生长的增益效果被F~-的作用所削减,这主要是因为F~-对植物光合系统中各种酶结构和活性的破坏和抑制作用,也可能与F~-和HCO_3~-在根系吸收时存在竞争关系有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号