首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
农学   1篇
综合类   1篇
农作物   3篇
  2015年   1篇
  2014年   1篇
  2005年   2篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 234 毫秒
1
1.
In 1998 and 1999 the UK winter wheat variety Rialto produced unexpected low Hagberg falling numbers that could not be directly linked to sprouting. It was proposed that these reductions in quality could be due to pre-maturity α-amylase activity (PMAA). The problem was not identified during the selection and commercial development stages. Our study tested the hypothesis that the variety Rialto is PMAA-susceptible. Analysis was done on 13 year-location combinations of field grown Rialto. Together, visual and chemical assessments of sprouting and iso-electric focusing of α-amylase isozymes identified several samples with significant α-amylase activity in the apparent absence of sprouting. In addition, tests with α-amylase sensitive Phadebas gel revealed distinctive PMAA discoloration patterns in 10–44% of the grain from the 13 samples, leading to the conclusion that Rialto is PMAA-susceptible. Diurnal temperature range accumulated for an 11 day period during a warm spell in early simulated grain development displayed a significant but negative correlation with the number of grains showing clear PMAA discoloration patterns on Phadebas gel. The number of clear PMAA grains correlated positively with rainfall accumulated over 11 days. These results suggest that PMAA can increase under conditions similar to those conducive to pre-harvest sprouting. It is however also possible that in some instances both PMAA and incipient sprouting could have produced similar patterns of α-amylase activity. In addition to tests with Rialto, Phadebas gel tests were therefore also done with the known high Hagberg varieties Option and Malacca, sprouted in a controlled environment. Results from the additional gel tests suggest that visual and chemical assessments of sprouting in the grain combined with Phadebas gel analysis could identify PMAA more reliably in grain sub-samples than Phadebas gel analysis alone.  相似文献   
2.
栽培因子对抗虫杂交棉生育期及产量形成的影响   总被引:5,自引:3,他引:2  
为提高杂交棉产量和品质,采用二次回归最优混合设计(311设计),研究了播期、栽培密度、施氮量三个栽培因子与抗虫杂交棉农杂62早熟性及产量性状的关系.结果表明:栽培因子对群体总果节量、成铃率、总铃数、单铃重、霜前皮棉产量及总产量均有显著影响.不同处理群体总果节量变幅为(224.1~328.5)×104个/hm2,单株铃数变幅为23.57~52.94个,全株平均单铃重随施氮量的增加而显著提高,早播使全株平均单铃重降低,密度对单铃重无显著影响,缺氮和早播导致霜前花比例显著增高.经模拟寻优,供试品种农杂62在湖南棉区4月17~18日播种、每公顷栽培2.25×104株、施氮量为262.5kg/hm2时,最高皮棉产量可达2238.6kg/hm2.  相似文献   
3.
To study the role of abscisic acid (ABA) and gibberellin (GA) sensitivity in regulating pre-maturity α-amylase (PMA) in wheat grains, plants were grown in a glasshouse under cold-shock and ambient conditions. α-amylase activity in response to applied ABA and GA was measured in detached-grains with the embryo removed (in vitro) and in intact-grains attached to the plant (in situ). The in vitro experiment was conducted using Spark (low PMA-susceptible genotype) and Rialto (highly PMA-susceptible genotype), with the aim of defining the time point for GA-sensitivity. The results showed an increase in GA-sensitivity at about 640 degree days after anthesis (DAA) in Rialto. There was no evidence for a change in ABA-sensitivity in either variety. The in situ experiments were conducted using genotypes from a Spark × Rialto doubled haploid population segregating for the Rht-D1a (tall) or Rht-D1b allele and for the presence or absence of 1BS/1RS. For Rht-D1a (tall) or Rht-D1b genotypes with or without 1BS/1RS, the cold-shock significantly increased GA-sensitivity, whereas there was no significant change in ABA-sensitivity. These results show PMA is related to an increase in GA-sensitivity that occurs in the aleurone at around 640 degree DAA, and can be enhanced by environmental factors (e.g. cold-shock).  相似文献   
4.
The occurrence of pre-maturity α-amylase (PMA) is a major cause of poor bread-making quality (low Hagberg Falling Number) in wheat grain. In susceptible genotypes, it involves the excessive accumulation of high isoelectric point (pI) α-amylase in mature grain prior to germination and in the absence of pre-harvest sprouting. Several factors regulate PMA formation in developing grain, including genotype, agronomy, and environmental conditions. In particular, a cold period during mid-grain development has been found to be a major stimulus for PMA induction. Although the factors affecting the PMA occurrence are well known, little is known about the molecular mechanism governing its induction. The plant hormones abscisic acid (ABA) and gibberellins (GAs) influence various aspects of grain development, and it has been suggested that PMA involves changes in the amount of these hormones or the sensitivity of the grain to these hormones. This review summarizes recent studies investigating the role of ABA and GAs in PMA induction and PMA occurrence.  相似文献   
5.
The frequency and mechanisms of four modes of alpha -amylase enzyme accumulation in U.K. wheat, retained pericarp alpha -amylase activity (RPAA), pre-maturity alpha -amylase activity (PMAA), pre-maturity sprouting (PrMS) and post-maturity sprouting (PoMS), were investigated in field and laboratory experiments. Of 56 cultivar site year combinations (four model cultivars grown at up to four sites from 1994–1997), enzyme activity was detected in 32 cases, in 23 cases sufficient to reduce Hagberg falling number (the usual industry measure of alpha -amylase) below the commercial criterion (250 s). The frequency of occurrence of different modes of enzyme accumulation was in the order PoMS>PMAA>PrMS>RPAA. Both PMAA and PrMS were more common than expected and the most usual pattern was for alpha -amylase to accumulate by several modes. Although green grains are rejected as impurities, study of grain colour in relation to pericarp alpha -amylase activity showed that the enzyme could persist in non-green grains in levels sufficient to affect the Hagberg value. Two factors thought to promote PMAA, grain drying rate and transient changes in temperature in early development, were studied in the field and controlled environment cabinets. No significant difference was found in grain drying rate between samples where PMAA was or was not identified. However, out of 19 transfers from a cool (16/10 °C) to a warm (26/20 °C) temperature regime, six led to significant increases in PMAA. No transfers after 45% grain moisture increased PMAA. PrMS occurred as early as 67% grain moisture and susceptibility usually increased with stage of development, being greatest in the grain dough stage. PrMS susceptibility varied with cultivar (in the same order as PoMS sensitivity) and was affected by environmental factors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号