首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
林业   1篇
农学   1篇
  2篇
综合类   6篇
园艺   1篇
植物保护   21篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Itchgrass ( Rottboellia exaltata L. f.) is a widespread weed in northern Thailand. The farmers in this area have been using itchgrass as a mulching material in order to control other weeds in vegetable fields. Laboratory experiments were undertaken to investigate the phytotoxic activity of itchgrass powder incorporated into soil in order to evaluate the allelopathic activity in the field. The phytotoxic activity on the growth of radish seedlings ( Raphanus sativa L. var. radicula ), used as a test plant, was more pronounced in the root than in the shoot growth. The phytotoxic activity was found to be similar for the soils incorporated with the shoot or the root powder of itchgrass. The growth of the radish seedlings grown in sea sand and watered with soil water obtained from the soil previously incorporated with itchgrass powder showed a similar inhibition to those planted in the treated soil. The phytotoxic activity on the growth of the radish seedlings in the soil incorporated with the powder decreased over time. It is suggested that itchgrass releases phytotoxic compound(s) into soil water and the concentration of the active compound(s) in the soil water decreases over time.  相似文献   
2.
总结了闭路无土栽培技术在国际上的研究进展和应用现状,分析连续栽培过程中营养液中常有植物毒性物质积累的原因,并综述了去除营养液中植物毒性物质方法的研究进展。  相似文献   
3.
Factors affecting phytotoxic activity of allelochemicals in soil   总被引:5,自引:1,他引:5  
Allelopathy is the inhibitory or stimulatory effect of a plant (donor) on other plants (receivers) through the chemicals released from the donor plant to the environment, mostly into the soil. These chemicals may reach the receiver plants in various ways, including leaching from plant foliage, exudation from the roots, and decomposition of dead residue of the donor plants. However, allelopathy in soil is a complicated phenomenon that is affected by soil condition, growth condition of the donor and receiver plants and climatic condition. Allelochemicals in soil are adsorbed on soil solids, and metabolized by chemical and biological reactions during the movement in soil. This behavior is affected by various soil factors, such as soil texture, organic and inorganic matter, moisture and organisms, which affect the phytotoxic activity in soil. If an allelochemical can directly affect the growth of receiver plants in soil, then the allelochemical might be present in the soil water so that it is directly available for absorption by the plant. Thus, it is suggested the concentration of an allelochemical in soil water is a dominant factor directly determining the phytotoxic activity in soil, and the concentration is controlled by soil factors that affect the behavior of adsorption, desorption and degradation in soil.  相似文献   
4.
Sphaeropsis sapinea was repeatedly isolated in Sardinia from symptomatic samples of the upper part of declining pine (Pinus radiata) plants. Observed symptoms mainly consisted of foliage chlorosis, drying of needles and cankers on branches. The S. sapinea strains were shown to produce phytotoxic metabolites in culture filtrates. Three metabolites were isolated for the first time from this fungus and identified by their spectroscopic and optical properties as R-(−)-mellein, (3R,4R)-4-hydroxymellein and (3R,4S)-4-hydroxymellein. When assayed for phytotoxic and antifungal activities on host and non-host plants and on some phytopathogenic fungi, the R-(−)-mellein showed significant activity, while the other two 3,4-dihydroisocoumarins showed only a synergic activity in both tests.  相似文献   
5.
6.
7.
The use of bioherbicides containing fungal active ingredients or natural fungal molecules is one of the possible solutions to reduce the use of chemical products. This paper focuses on studies of bioherbicides, including both living fungi and natural fungal molecules, published in the last 45 years, and their associated weed targets; current problems in the development of bioherbicides are also discussed. Bibliometric methods based on the Web of Science database were used to analyse relevant articles published between 1973 and 2018. Overall analysis suggested that interest in bioherbicides extends over the preceding thirty years, when many potential microorganisms and natural fungal molecules were proposed. Furthermore, analysis of about 229 articles indicated an encouraging exploitable potential, although there is a real gap between the number of experimental studies and the small number of products currently on the market. A dozen fungal-based bioherbicides are on the market in the United States and Canada, while countries, such as China and South Africa, have one, and none is available in Europe. The active ingredients in these bioherbicides are living fungi, but no fungal molecule-based product is thus far on the market. Reasons for this gap include production hurdles, formulation process, ecological fitness, duration of herbicidal effects, and costly and time-consuming registration procedures. However, it is clear that analysis of fungus–plant interactions provides a promising source of bioherbicides that may be applied to appropriate cropping systems for environment-friendly, sustainable weed control.  相似文献   
8.
The relationship between the behavior of clomeprop ([ RS ]-2-[2,4-dichloro- m -tolyloxy]propionanilide) and its residual phytotoxic activity in the soil was investigated in the laboratory with special emphasis on the concentration in the soil water. The phytotoxic activity of clomeprop on radish seedlings ( Raphanus sativus L. var. radicula cv. Akamaruhatsukadaikon), as the test plant, became greater with time after application but the inhibition was different between the two soils, which had different properties. The amount of 2-(2,4-dichloro-3-methylphenoxy)propionic acid (DMPA), a hydrolyzed and active metabolite of clomeprop, in the soil water and total soil increased with time, corresponding to the decrease in the amount of clomeprop under non-water leakage conditions. The residual phytotoxic activity of clomeprop in the soil was more highly correlated with the concentration of DMPA in the soil water than with the amount of DMPA in the total soil. In addition, a leaching column test was conducted with clomeprop and DMPA. The DMPA easily moved downward and the concentration in the soil water in the upper layer decreased with time after application. It is supposed that the downward movement of DMPA was one of the factors influencing the lasting effect of clomeprop in the field.  相似文献   
9.
A 2 year field experiment was conducted in northern Greece to study the biomass effects of four oregano (Origanum vulgare) biotypes, used as incorporated green manure, on the emergence and growth of barnyard grass (Echinochloa crus‐galli), bristly foxtail (Setaria verticillata), common purslane (Portulaca oleracea), cotton (Gossypium hirsutum), and corn (Zea mays). The oregano biotypes were selected on the basis of their high phenolic content. The phytotoxic potential of the oregano biotype extracts also was determined in the laboratory by using a perlite‐based bioassay with cotton, corn, and barnyard grass. The bioassays indicated that the germination, root elongation, and fresh weight of cotton, corn, and barnyard grass were reduced by the oregano biotype extracts. In the field, the emergence of common purslane, barnyard grass, and bristly foxtail was reduced by 0–55%, 38–52%, and 43–86%, respectively, in the oregano green manure treatments, as compared with the oregano green manure‐free treatments (the controls). At harvest, the cotton lint and corn grain yields in the oregano green manure treatments were 24–88% and 5–16%, respectively, greater than those in the corresponding green manure‐free, weedy treatments. These results indicated that when the biomass of the oregano biotypes with a high phenolic content were incorporated into the soil as green manure, they could be used to suppress barnyard grass, bristly foxtail, and common purslane in cotton and corn and consequently to minimize herbicide usage.  相似文献   
10.
通过研究集约经营条件下,雷竹Phyllostachys praecox栽培时间对土壤化学性质,尤其是对土壤酸度和土壤生理毒性铝形态分布的影响,为评估酸化雷竹林地土壤铝毒胁迫强度及其在雷竹林土壤退化过程中的贡献提供理论支持。设对照(水稻田和红豆杉Taxus chinensis幼林地)和栽植年限分别为2,6(2009年冬天第1次覆盖),8,11,16和20 a(退化林地)的雷竹林地共8种/类样地(处理),每种(类)样地设3个采样样方,取样剖面分别为0~10,10~20和20~40 cm。结果表明:改植雷竹后,随着竹林栽培时间的延长,表层和亚表层土壤(0~10 cm和10~20 cm)酸碱度从对照的pH 6.53(水稻土)和pH 5.57(红豆杉幼林地)下降到pH 3.55(栽培20 a雷竹林地),土壤有机质和阳离子交换量在覆盖后逐渐上升,土壤腐殖质稳定性不断下降,而土壤电导率随竹林经营强度和施肥量的变化而呈前期上升后期下降的趋势。雷竹林表层和亚表层土壤(0~10 cm和10~20 cm)中8-羟基喹啉提取态铝质量分数随竹林栽培时间的延长和土壤酸度值的下降而增加,相比较于对照水稻田和红豆杉幼林地(10.08 mg.kg-1和22.94 mg.kg-1),栽培16 a后雷竹林土壤中8-羟基喹啉提取态铝质量分数高达108.01 mg.kg-1,分别高出对照(水稻土和红豆杉幼林地)10倍和5倍;雷竹林土壤中乙酸提取态铝与8-羟基喹啉提取态铝的变化趋势基本一致。相关分析表明:两者呈极显著正相关关系(r=0.911 7,P〈0.000 1,校正后的R2=0.828 7)。以上结果说明:随着雷竹林集约经营时间的增加和土壤持续酸化,雷竹林地遭受铝毒胁迫的风险逐渐增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号