首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  3篇
综合类   8篇
植物保护   12篇
  2014年   1篇
  2010年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
 针对长残效磺酰脲类除草剂的特点,从降低除草剂用量、加速除草剂降解、敏感作物解毒等方面进行了研究,以控制该类除草剂残留对后茬作物的危害。降低长残效除草剂用量的方法有:添加增效剂,在本试验中采用SDP,在甲磺隆低剂量情况下可以明显提高除草效果达20%以上;与其它除草剂品种混配,如二甲四氯、苯磺隆、噻磺隆、异丙隆等,以提高药效,降低用量。适当的农作措施,如增加小麦密度、使用分蘖力强的品种,可以有效控制晚春杂草的发生。加速除草剂降解的措施有小麦秋季用药,不仅可以有效提高药效,降低用量,还可以增加除草剂的降解时间;增加浇水次数或晚浇水,可以加速除草剂的淋溶。使用保护剂萘酐拌种和赤霉素、芸苔素内酯等植物调节剂苗后缓解药害等措施,可以减轻药害。  相似文献   
2.
Metsulfuron-methyl is one of the widely used sulfonylurea herbicides. However, approximately half of the applied metsulfuron-methyl may remain as bound residues in soil. To characterize the response of rice plants to residual metsulfuron-methyl in soil, the activities of acetolactate synthase (ALS), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were investigated in two rice varieties that differed in susceptibility to the herbicide. Changes in the activity of these enzymes in leaves and roots of Xiushui 63, a sensitive rice variety, were greater than those in a resistant variety Zhenong 952. Irrespective of variety, changes in the enzyme activity were greater in the roots than in the leaves. The activities of ALS and CAT decreased, while the SOD activity increased with the increase in the amounts of bound residues of metsulfuron-methyl (BRM) in soil. The POD activity increased at the BRM level of 0.025 mg kg^-1, but decreased at the BRM level of 0.05 mg kg^-1. The results showed that the bound residues of sulfonylurea herbicides may affect metabolism of rice plants.  相似文献   
3.
We investigated the impacts of application of the sulfonylurea herbicide, metsulfuron-methyl, on soil and litter invertebrates in coastal vegetation where the weed Chrysanthemoides monilifera has invaded. We followed changes in litter invertebrates for 125 days following treatment to investigate direct toxic and indirect effects of treatment. Overall we found no effect of treatment on abundance, taxonomic richness or composition of litter invertebrates. In general, abundance and richness declined with time in both treated and untreated sites, suggesting that climatic factors were far more important in determining invertebrate communities than the effects of the treatment. Even changes in cover of vegetation as a result of death of the weed resulted in few measurable effects on invertebrates. It is concluded that metsulfuron-methyl had no impact on invertebrate communities up to 125 days following treatment.  相似文献   
4.
为研究甲磺隆和草甘膦对空心莲子草的作用机理,探索其最佳的使用技术,采用有效成分为30 g/hm2和60 g/hm2 的甲磺隆处理空心莲子草,能明显抑制其茎和根乙酰乳酸合酶的比活性;有效成分为1537.5g/ hm2和3075g/ hm2 的草甘膦处理则能明显抑制空心莲子草莽草酸含量的积累;施用甲磺隆和草甘膦对空心莲子草生长的抑制作用随药剂浓度的提高而增大.二次施用草甘膦(间隔30天)的结果表明,低剂量处理对抑制空心莲子草根组织莽草酸含量的积累更明显.  相似文献   
5.
The transformations of eight herbicides (atrazine, simazine, terbutryn, pendimethalin, carbetamide, 2,4-D, metsulfuron-methyl and dimefuron) in soil after compost addition were monitored during long-term laboratory incubations. The herbicides were applied to soil, compost and soil-compost mixtures. Herbicide sorption, their kinetics of mineralisation and the extractability of residues were compared in the different treatments. Compost addition to soil generally decreased herbicide mineralisation and favoured the stabilisation of herbicide residues. A fraction of the stabilised residues remained extractable and potentially available. However, most of them were unextractable and formed bound residues. Sorption could be at the origin of a kinetically limited biodegradation, mainly for the most highly-sorbed herbicides (atrazine, simazine, terbutryn, pendimethalin and dimefuron). Compost addition had little effects on the less sorbed herbicides (carbetamide, 2,4-D and metsulfuron- methyl). © 1997 SCI.  相似文献   
6.
The effects of a range of herbicide doses on crop–multiple weed competition were investigated. Competitivity of Galium aparine was approximately six times greater than that of Matricaria perforata with no herbicide treatment. Competitivities of both weeds decreased with increasing herbicide dose, being well described by the standard dose–response curve with the competitivity of M. perforata being more sensitive than that of G. aparine to a herbicide mixture, metsulfuron‐methyl and fluroxypyr. A combined model was then developed by incorporating the standard dose–response curve into the multivariate rectangular hyperbola competition model to describe the effects of multiple infestation of G. aparine and M. perforata and the herbicide mixture on crop yield. The model developed in this study was used to predict crop yield and to estimate the herbicide dose required to restrict crop yield loss caused by weeds to an acceptable level. At the acceptable yield loss of 5% and the weed combination of 120 M. perforata plants m?2 and 20 G. aparine plants m?2, the model recommends a mixture of 1.2 g a.i. ha?1 of metsulfuron‐methyl and 120 g a.i. ha?1 of fluroxypyr.  相似文献   
7.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   
8.
沉积物、生物炭和活性炭吸附甲磺隆的特征及机理   总被引:1,自引:1,他引:0  
吸附是影响污染物环境行为的关键因素,鉴于甲磺隆在环境介质中的高迁移性和环境风险,探讨了甲磺隆在沉积物和碳质吸附剂(生物炭和活性炭)上的吸附特征和机理。结果表明,吸附剂的性质对甲磺隆的吸附有重要影响:有机质含量高、p H低的沉积物有利于甲磺隆的吸附;对于碳质吸附剂,非线性指数n与H/C正相关,吸附能力lg Koc与H/C负相关,表明炭化程度越高,吸附非线性程度越强,吸附能力越大,可能是因为微孔数量和芳香碳含量增多分别有利于孔填充作用和π-π电子受体-供体(π-πEDA)作用的发生;lg Koc与比表面积(SA)正相关进一步说明了孔填充起着重要作用,lg Koc与O/C负相关表明碳质吸附剂表面的疏水性越强越有利于甲磺隆的吸附。生物炭和活性炭对甲磺隆的吸附能力分别比沉积物约高1和3个数量级,表明施加碳质吸附剂可能会降低沉积物中甲磺隆向地表水和地下水的迁移性。尽管生物炭的吸附能力低于活性炭,但是相比于活性炭,生物炭的成本更加低廉,具有广阔的应用前景。  相似文献   
9.
应用液相色谱法测定坪草净的有效成分甲磺隆和苄嘧磺隆在3种土壤中的残留动态。结果显示:2666.66mg·L-1的10%坪草净均匀喷雾后6h,甲磺隆在黄棕壤、黄褐土和黄潮土中的残留量分别为0.95、0.84和1.05mg·kg-1,而苄嘧磺隆在黄棕壤、黄褐土和黄潮土中的残留量分别为20.15、18.76和24.24mg·kg-1。甲磺隆、苄嘧磺隆在黄棕壤、黄褐土和黄潮土中的半衰期分别为55.5d和42.5d、88.9d和59.2d、216.6d和110.0d。试验结果表明,坪草净有效成分在黄棕壤中降解最快,而苄嘧磺隆比甲磺隆在3种土壤中更易降解。  相似文献   
10.
介绍了60%甲磺隆水分散粒剂的制备方法,并简述了其特点、配方选择、质量技术标准、贮藏稳定性等。试验结果表明:该产品悬浮率90%以上,崩解时间小于30 s,产品各项指标符合水分散粒剂的要求。不同剂量甲磺隆水分散粒剂对杂草的田间防除药效试验结果表明,选用的润湿剂、分散剂是十分优良的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号