首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   8篇
  国内免费   7篇
农学   3篇
  10篇
综合类   5篇
农作物   2篇
水产渔业   1篇
畜牧兽医   2篇
植物保护   16篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2007年   2篇
  2005年   1篇
  1996年   1篇
排序方式: 共有39条查询结果,搜索用时 153 毫秒
1.
CRISPR/cas是一种获得性免疫防御系统,广泛存在于细菌和古细菌中。Strep tococcus pyogenes cas9(Spcas9)作为目前研究最多、最清楚的效应蛋白,因其酶活性高和靶点广而被应用于生命科学各个领域,但Spcas9分子量大、脱靶率高等缺点在一定程度上限制了其应用。随着CRISPR系统技术被深入开发,一些新效应蛋白被发现,本文就CRISPR/cas系统分类、原理、新效应蛋白发现及cas9(S.Pyogenes)多种变构体技术开发在及家禽上的应用进行综述,为相关领域的研究提供参考。  相似文献   
2.
The centre of origin of the globally distributed wheat pathogen Parastagonospora nodorum has remained uncertain because only a small number of isolates from the Fertile Crescent were included in earlier population genetic and phylogeographic studies. We isolated and genetically analysed 193 P. nodorum strains from three naturally infected wheat fields distributed across Iran using 11 neutral microsatellite loci. Compared to previous studies that included populations from North America, Europe, Africa, Australia, and China, the populations from Iran had the highest genetic diversity globally and also exhibited greater population structure over smaller spatial scales, patterns typically associated with the centre of origin of a species. Genes encoding the necrotrophic effectors SnToxA, SnTox1, and SnTox3 were found at a high frequency in the Iranian population. By sequencing 96 randomly chosen Iranian strains, we detected new alleles for all three effector genes. Analysis of allele diversity showed that all three effector genes had higher diversity in Iran than in any population included in previous studies, with Iran acting as a hub for the effector diversity that was found in other global populations. Taken together, these findings support the hypothesis that P. nodorum originated either within or nearby the Fertile Crescent with a genome that already encoded all three necrotrophic effectors during its emergence as a pathogen on wheat. Our findings also suggest that P. nodorum was the original source of the ToxA genes discovered in the wheat pathogens Phaeosphaeria avenaria f. sp. tritici 1, Pyrenophora tritici-repentis, and Bipolaris sorokiniana.  相似文献   
3.
植物病原菌侵染寄主的过程就是病原菌和寄主植物相互作用的过程。在这个相互作用过程中,Ⅲ型分泌系统和Ⅲ效应物与病原菌致病密切相关。大部分革兰氏阴性植物病原菌通过Ⅲ型分泌系统定向的把效应物蛋白传递到宿主细胞,效应物蛋白进入植物体引起致病或过敏反应。本研究将百日咳杆菌的腺苷酸环化酶基因连接至含启动子的pLAFRJ载体上,从而构建出一个新的体外快速鉴定Ⅲ型效应物的报告质粒pJ-JA,并用已鉴定为Ⅲ型效应物基因的十字花科黑腐病菌XC1553的启动子和信号区验证该报告质粒,证明这个系统是可以工作的。该报告质粒为进一步精确筛选鉴定十字花科黑腐病菌Ⅲ型效应物提供了材料。  相似文献   
4.
Acidovorax citrulli is the causal agent of bacterial fruit blotch disease of cucurbits. Strains of this pathogen are distributed into two major groups: Group I strains have been mainly isolated from melon and other non-watermelon cucurbits, while Group II strains have been mainly recovered from watermelon. Here we report the characterization of strains T1 and EP isolated from diseased tomato and eggplant plants, respectively, and further confirmed to belong to A. citrulli species. Based on PCR, PFGE, and rep-PCR, these strains showed high similarity to the Group II strain 7a1. Sequencing and comparative analyses revealed that the genomes of T1 and EP aligned with that of the Group II model strain AAC00-1, over 97.88% and 99.22%, respectively. The virulence of T1, EP, and 7a1 determined on tomato, eggplant, and watermelon was similar and significantly higher than that of Group I strain M6. In contrast, M6 was more virulent on melon. Expression levels of seven virulence genes measured 24 hr after inoculation of tomato, eggplant, watermelon, and melon showed that the expression pattern was generally similar in strains 7a1, T1, and EP, whereas for M6 the expression was high only on melon. Overall, our results indicate that the solanaceous strains belong to Group II. To the best of our knowledge, this is the first study that reports characterization of A. citrulli strains isolated from solanaceous species. The fact that A. citrulli is able to naturally colonize and cause disease in non-cucurbit crops poses additional challenges for management of this important pathogen.  相似文献   
5.
Pseudomonas syringae pv. actinidiae (Psa) is responsible for bacterial canker of kiwifruit. Biovar 3 of Psa (Psa3) has been causing widespread damage to yellow‐ and green‐fleshed kiwifruit (Actinidia spp.) cultivars in all the major kiwifruit‐producing countries in the world. In some areas, including New Zealand, P. syringae pv. actinidifoliorum (Pfm), another bacterial pathogen of kiwifruit, was initially classified as a low virulence biovar of Psa. Ability to rapidly distinguish between these pathovars is vital to the management of bacterial canker. Whole genome sequencing (WGS) data were used to develop PCR assays to specifically detect Psa3 and Pfm from field‐collected material without the need to culture bacteria. Genomic data from 36 strains of Psa, Pfm or related isolates enabled identification of areas of genomic variation suitable for primer design. The developed assays were tested on 147 non‐target bacterial species including strains likely to be found in kiwifruit orchards. A number of assays did not proceed because although they were able to discriminate between the different Psa biovars and Pfm, they also produced amplicons from other unrelated bacteria. This could have resulted in false positives from environmental samples, and demonstrates the care that is required when applying assays devised for pure cultures to field‐collected samples. The strategy described here for developing assays for distinguishing strains of closely related pathogens could be applied to other diseases with characteristics similar to Psa.  相似文献   
6.
油菜与核盘菌互作分子机理研究进展   总被引:1,自引:0,他引:1  
菌核病是由核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)引起的真菌性病害,每年导致油菜(Brassica napus L.)产量损失10%-20%,是制约我国油菜生产最主要的病害。培育抗(耐)病油菜品种是防治油菜菌核病最为经济有效的途径。本文主要综述了近五年油菜-核盘菌互作分子机制的研究进展。研究表明:(1)核盘菌侵染寄主早期存在活体营养型阶段;(2)草酸提供的酸性pH,而非草酸本身,是核盘菌的必需致病因子;(3)核盘菌有效地利用效应蛋白抑制寄主的抗病反应或者诱导寄主细胞坏死以帮助其侵染;(4)油菜对菌核病的抗性具有中等遗传力,为数量抗性;(5)病原相关分子模式(pathogen-associated molecular pattern, PAMP)引发的免疫反应(PAMP-triggered immunity, PTI)是油菜对核盘菌产生数量抗性的主要根源;(6)功能基因组学研究表明抗(耐)病油菜材料防卫反应更加剧烈,能有效调控细胞内的氧化还原平衡状态,及时清除过量活性氧(reactive oxygen species,ROS)的积累,抑制细胞死亡。核盘菌-油菜互作分子机制的研究将有助于指导油菜抗菌核病育种。  相似文献   
7.
Detailed knowledge of the evolutionary genetics of virulence is needed to understand and predict host–pathogen dynamics. This study used a virulence assay based on digital image analysis and treated virulence as a quantitative rather than a binary trait. Such quantitative data may better reflect the genetic underpinning of virulence in many pathogen systems and provide better resolution in statistical investigations. A greenhouse experiment based on a common garden design was conducted to measure virulence (% of leaf area covered by lesions) of 126 genetically distinct isolates of the barley scald pathogen, Rhynchosporium commune, originating from nine field populations around the world. Virulence in this pathosystem was found to be a quantitative trait with a continuous distribution in all populations. By comparing population genetic differentiation for virulence and neutral microsatellite markers (i.e. a QST/GST comparison), evidence that virulence is under stabilizing selection across populations was found. Heritability values were high and ranged from 0·52 to 0·96 with a mean heritability of 0·84. Virulence was positively correlated with spore production as predicted by the trade‐off theory of virulence evolution. Furthermore, an association analysis between virulence and sequence haplotypes of three known necrosis‐inducing effector genes (NIP1, NIP2 and NIP3) revealed a significant effect of NIP2 haplotypes and NIP1 deletions. Overall, the results support a quantitative model for virulence in the R. commune–barley pathosystem and very high evolutionary potential for this trait.  相似文献   
8.
在植物寄生线虫与寄主互作过程中,线虫分泌器官如食道腺细胞分泌的效应蛋白在寄主细胞壁修饰和调控寄主免疫反应以及取食位点形成和维护中发挥着关键作用。解析植物寄生线虫关键效应蛋白的功能及其与寄主互作机制将为探索植物寄生线虫防控新策略提供重要的理论基础。本文从效应蛋白降解寄主细胞壁、调控寄主基础免疫反应、诱导免疫反应机制和介导翻译后修饰调控寄主免疫反应以及植物激素代谢途径的调控机制等方面进行了概述。  相似文献   
9.
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken immune system and mediate the first line of defense against viral pathogens infecting the avian species. Recognition of viral pathogens by specific pattern recognition receptors (PRRs) induce chicken type I IFNs expression followed by their subsequent interaction to IFN receptors and induction of a variety of IFN stimulated antiviral proteins. These antiviral effectors establish the antiviral state in neighboring cells and thus protect the host from infection. Three subtypes of chicken type I IFNs; chIFN-α, chIFN-β, and a recently discovered chIFN-κ have been identified and characterized in chicken. Chicken type I IFNs are activated by various host cell pathways and constitute a major antiviral innate defense in chicken. This review will help to understand the chicken type 1 IFNs, host cellular pathways that are involved in activation of chicken type I IFNs and IFN stimulated antiviral effectors along with the gaps in knowledge which will be important for future investigation. These findings will help us to comprehend the role of chicken type I IFNs and to develop different strategies for controlling viral infection in poultry.  相似文献   
10.
The effect of the pathogen Phytophthora austrocedrae on tree physiology of Austrocedrus chilensis in Patagonia was studied in a 4‐week study. In the first week, stem‐inoculated saplings showed a significant decrease in photosynthesis (A) without alteration of stomatal conductance (gs) or stem‐specific hydraulic conductivity (Ks). From the second week on, progressive decreases in A, gs and Ks were observed, concomitantly with development of significant stem lesions. Water use efficiency (WUE) increased in the second week and declined progressively from the third week. Hyphae and resinous materials were observed in tracheids and rays below lesions. Necrosis of parenchyma ray cells and blockage of tracheids torus were observed. Healthy xylem showed no resinous materials or tracheid blockage, but abundant starch in rays, which was absent in altered xylem. The culture filtrate (CF) of the pathogen was shown to induce changes in extracellular pH and conductivity, and increased necrosis in tissues of leaves and stem challenged with CF in vitro. Similar results were obtained in leaf tissues of the inoculated saplings in vivo. CF injection into xylem of saplings induced a decline in A and disturbance of leaf tissue integrity, without altering gs, WUE or Ks. The decrease of A correlated with changes in tissue integrity. A possible mechanism of A. chilensis decline induced by P. austrocedrae is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号