首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   4篇
基础科学   1篇
  7篇
综合类   4篇
  2021年   2篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   4篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 46 毫秒
1.
详细介绍了用双阻离子选择性微电极活体测定小白菜叶片活体细胞中硝酸根离子的活度的方法原理及注意事项.微电极与溶液中硝酸根离子的浓度呈对数曲线的关系,斜率为48~58 mV,对硝酸根离子浓度有较低的检出限,是一种选择性高、灵敏、经济的测定植物活体细胞中离子活度的方法.小白菜生长至六叶期时,用含有5mol m-3 NO3-的营养液诱导48h.测定结果表明,叶片细胞中硝酸根离子活度分布在活度高低明显不同的两个区间内,在细胞质中是0.24~10 mol m-3,液泡中20~110 mol m-3, 且两个区间在细胞跨膜电位上也有差异.液泡占整个细胞体积的90%, 所以,植物所吸收的硝酸根离子都集中在液泡中.  相似文献   
2.
微电极法测定水稻叶片液泡中硝酸根离子的再调动   总被引:6,自引:0,他引:6  
 作物液泡中硝酸根离子的再调动和再利用与作物氮素高效利用关系密切。利用硝酸根离子微电极技术测定了在外界继续供应和停止供应硝态氮后,不同水稻品种叶片细胞质和液泡中硝酸根离子活度在24 h内的变化情况。结果表明:(1)在继续供应硝态氮后,水稻植株组织水平的硝酸根离子浓度没有显著的变化,而停止供应硝态氮的植株体内硝酸根离子浓度却有随缺氮时间延长而降低的趋势;(2)水稻叶片细胞质和液泡中硝酸根离子活度存在着明显不同的变化趋势。在停止供应硝态氮的24 h内,水稻叶片液泡中的硝酸根离子浓度逐渐降低,而细胞质中的硝酸根离子却维持在一个较低的浓度且基本稳定;(3)扬稻6号液泡中和细胞质中的硝酸根离子活度均高于农垦57,且在停止供应硝态氮的不同时间段,液泡中硝酸根离子的释放速率也均高于农垦57。上述结果表明在受到硝态氮营养胁迫时,水稻先前积累在叶片液泡中的硝酸根离子可以在细胞中进行重新的利用和分配,而且籼稻品种扬稻6号对液泡硝酸根离子再调动能力显然高于粳稻农垦57。  相似文献   
3.
利用微电极技术分别测定了2个水稻品种即武育粳3号(粳稻)和扬稻6号(籼稻)幼苗根尖细胞在吸收不同NH4+浓度(0.0250、.05、0.1、0.5、1.0和1.5.mmol/L)下膜电位的变化特征。结果表明,水稻根系吸收NH4+引起膜的去极化,去极化到一定程度出现部分复极化,有一小部分根系还有超极化现象。去极化大小随外界处理液中NH4+浓度的增加而加强,达到一定程度以后趋于平稳,吸收进程符合Michaelis-Menten动力学特征。两个品种产生的去极化程度不同,武育粳3号产生的去极化大小平均为16.5.mV,扬稻6号产生的去极化大小平均为22.6.mV。在低浓度NH4+(1.0.mmol/L)处理下,扬稻6号对NH4+较敏感,产生的去极化大小平均为17.5.mV,高于武育粳3号(去极化大小平均为10.9.mV),两个品种产生的去极化大小差异显著(p0.05)。研究结果表明,扬稻6号吸收NH4+的能力比武育粳3号强,这与吸收动力学的结果是一致的。  相似文献   
4.
Physiological Responses of Two Wheat Cultivars to Nitrogen Starvation   总被引:1,自引:0,他引:1  
Plants need to be efficient in nutrient management,especially when they face the temporal nutrient defficiencies.Understanding how crops respond to nitrogen (N) starvation would help in the selection of crop cultivars more tolerant to N deficiency.In the present work,the physiological responses of two wheat cultivars,Yannong 19 (YN) and Qinmai 11 (QM),to N starvation conditions were investigated.The two cultivars differed in biomass and N rearrangement between shoots and roots during N starvation.QM allocated more N to roots and exhibited higher root/shoot biomass ratio than YN.However,tissue measurement indicated that both cultivars had similar nitrate content in leaves and roots and similar remobilization rate in roots.Microelectrode measurement showed that vacuolar nitrate activity (concentration) in roots of QM was lower than that in roots of YN,especially in epidermal cells.Nitrate remobilization rates from root vacuoles of two cultivars were also identical.Moreover,vacuolar nitrate remobilization rate was proportional to vacuolar nitrate activity.During N starvation,nitrate reductase activity (NRA) was decreased but there were no significant differences between the two cultivars.Nitrate efflux from roots reduced after external N removal and QM seemed to have higher nitrate efflux rate.  相似文献   
5.
双管离子选择性微电极制备方法研究   总被引:1,自引:1,他引:0  
双管离子选择性微电极被广泛应用于植物细胞外离子流速和细胞内离子活度的测量,但双管离子选择性微电极(Ion-Selective Microelectrode,ISME)的制备过程繁琐,不可控因素多,制备成功率低。针对存在的问题,该研究提出了一种简易、快速的双管ISME制备方法。首先,介绍了双管微电极制备、硅烷化和电极尖端灌充液态离子交换剂(Liquid Ion Exchanger,LIX)的具体流程;其次,对制备的双管ISME的能斯特斜率和响应时间进行了测试。试验结果表明,使用蒸汽硅烷法对双管微电极进行硅烷化处理,最优硅烷化温度、二甲基二氯硅烷剂量和硅烷化时间分别为150℃、45μL和90min;制备的双管氢离子、钾离子、钙离子、氯离子选择性微电极的能斯特斜率分别为54.08、56.51、27.08和-58.80 mV/dec;4种双管ISME的响应时间介于0.20~0.42 s之间。研究结果表明,由该研究制备方法制作的双管ISME,可以满足植物细胞外离子流速和细胞内离子活度信息检测的要求。双管ISME的快速制备,降低了离子选择性微电极技术的应用难度,将有利于植物电生理检测试验的进行和离子选择性微电极技术在农作物育种、生理抗逆、植物营养吸收与同化等研究领域的应用。  相似文献   
6.
SIET(self-referencing ion electrode technique,自参考离子选择性电极技术)是电生理学研究的新手段,可以在植物抗逆研究中无损地获得植物细胞、组织、器官微区内离子流动态变化信息,而离子选择性微电极的制备及性能测试的标准化是SIET系统对植物活细胞、活体组织原位离子流测试的前提。该文以钾离子选择性微电极为例,详细讨论了离子选择性微电极的拉制、硅烷化、灌充等制备过程,研究了微电极内阻等电极参数的测量方法,测试了微电极的能斯特响应斜率、检测范围、响应时间等参数,讨论了制备过程中微电极性能的影响因素。离子选择性微电极使用WD-2型微电极拉制仪由无导液丝的TW150-3型硼硅酸盐玻璃毛细管拉制成形,其尖端直径为1~9 μm,干燥后用5%硅烷试剂在150℃温度下做硅烷化处理,再灌充入内充液与LIX(liquid ion exchanger,液态离子交换剂)而制成。研究表明:LIX成分是影响微电极内阻的重要因素,灌充LIX后的钾离子选择微电极(LIX长度为150~210 μm)内阻达到108~109 Ω,明显高于灌充LIX前;微电极在0.01~500 mmol/L K+浓度范围内具有很好的线性关系,R2=0.9998,能斯特斜率为53.095 mV/dec;微电极对1和100 mmol/L KCl溶液的平均响应时间t95%小于1 s。研究结果表明,离子选择性玻璃微电极的制备过程是影响微电极性能的关键,微电极尖端尺寸、内阻、响应时间等参数对微电极的应用影响显著。该研究可为离子选择性微电极的制备及其在SIET系统中的应用提供参考。  相似文献   
7.
该文以沙冬青、绿豆为材料,利用微电极技术实时记录了活体沙冬青和绿豆根冠细胞膜电位对不同盐分的原初响应,分析了质膜转运蛋白抑制剂(Vanadate、TEA)对植物根冠细胞膜电位的影响。结果表明:50、100、200 mmol/L NaCl、KCl和LiCl均会引起植物细胞膜电位去极化。对于同一阳离子而言,去极化程度随处理液中离子浓度的增加而加强;对于同一浓度、不同阳离子而言,由于水合离子半径大小不一(K+<Na+<Li+),在根自由空间的迁移速率不同(K+>Na+>Li+),因此引起膜电位的去极化程度也存在差异(K+>Na+>Li+);同一阳离子且同一浓度下对于不同植物来说,绿豆根冠细胞膜电位去极化程度大于沙冬青,即单位时间绿豆根对Na+的通透性大于沙冬青。质膜H+ ATPase和K+通道参与了沙冬青和绿豆在盐胁迫时的原初响应,K+通道可能参与了Na+的跨膜转运。   相似文献   
8.
详细介绍了用双阻离子选择性微电极活体测定小白菜叶片活体细胞中硝酸根离子的活度的方法原理及注意事项。微电极与溶液中硝酸根离子的浓度呈对数曲线的关系,斜率为48~58mV,对硝酸根离子浓度有较低的检出限,是一种选择性高、灵敏、经济的测定植物活体细胞中离子活度的方法。小白菜生长至六叶期时,用含有5molm-3NO3-的营养液诱导48h。测定结果表明,叶片细胞中硝酸根离子活度分布在活度高低明显不同的两个区间内,在细胞质中是0.24~10molm-3,液泡中20~110molm-3,且两个区间在细胞跨膜电位上也有差异。液泡占整个细胞体积的90%,所以,植物所吸收的硝酸根离子都集中在液泡中。  相似文献   
9.
盐碱化改良区农田排水沟水体与底泥界面微环境特征分析   总被引:1,自引:1,他引:0  
深入探究农田排水沟水体与底泥界面微环境对界面间物质交换和迁移转化具有重要意义,为了明确不同水力联系的排水沟界面微环境特征,该研究利用微电极测量系统对陕西卤泊滩盐碱化改良区和盐荒地2种水力条件差异较大的排水沟水体与底泥界面微环境进行了研究.结果表明:改良区与盐荒地排水沟水体水质指标和底泥含水率、有机质、硫酸盐含量等方面均...  相似文献   
10.
本文介绍了双阻NH4+选择性微电极的制作方法、工作原理及操作方法。微电极电位响应値与溶液中NH4+的活度呈对数曲线的关系,NH4+选择性微电极与其他类型的电极(如H+、NO3-)最大区别是K+的干扰,在含有72 mmol/L K+的标定溶液中,电极标定曲线的斜率为48~58 mV,对NH4+的检出限小于10-4 mol/L,说明电极对NH4+有较高的选择性,受K+的影响较小,可以用来测定。用以测定2.5 mmol/L NH4+培养2周的水稻叶片,结果表明,叶片细胞中NH4+活度分布在高低不同的两个区间内,分别代表了细胞质和液泡中的测定,水稻叶片细胞质和液泡NH4+的活度分别为2.58~9.30 mmol/ L和11.36~25.20 mmol/L。水稻叶片组织中的NH4+主要来自液泡,流动分析仪测定的水稻叶片组织的NH4+浓度为11.12 mmol/L。NH4+选择性微电极为研究水稻对NH4+的吸收利用提供了技术支撑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号