首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2176篇
  免费   139篇
  国内免费   372篇
林业   233篇
农学   122篇
基础科学   179篇
  945篇
综合类   808篇
农作物   48篇
水产渔业   90篇
畜牧兽医   185篇
园艺   15篇
植物保护   62篇
  2024年   27篇
  2023年   86篇
  2022年   99篇
  2021年   98篇
  2020年   99篇
  2019年   101篇
  2018年   96篇
  2017年   126篇
  2016年   167篇
  2015年   125篇
  2014年   146篇
  2013年   181篇
  2012年   207篇
  2011年   160篇
  2010年   109篇
  2009年   122篇
  2008年   89篇
  2007年   106篇
  2006年   116篇
  2005年   66篇
  2004年   69篇
  2003年   48篇
  2002年   39篇
  2001年   30篇
  2000年   33篇
  1999年   36篇
  1998年   17篇
  1997年   29篇
  1996年   13篇
  1995年   5篇
  1994年   6篇
  1993年   10篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1956年   1篇
排序方式: 共有2687条查询结果,搜索用时 15 毫秒
1.
木材干燥导水系数和换水系数的研究   总被引:3,自引:0,他引:3  
尚德库  艾沐野 《林业科学》1992,28(5):476-479
木材(板、方材)的导水系数和换水系数是反映木材干燥或存放过程中水分迁移的重要物性参数。然而,我国对木材导水系数和换水系数的研究和测定工作十分有限。木材干燥有关的理论计算中,常用原苏联的数据。由于这些数据本身可能存在的误差及用于我国树种的可靠程度难以估计,故使理论结果的实际运用受到限制。本文采用等厚试件系数分离法研究和测定了木材干燥过程动态导水系数和换水系数。  相似文献   
2.
本文通过光合作用参数的测定,详细的研究了中系8541和8240两种不同产量水平的水稻品种的光合特性.论述了在含等量叶绿素的条件下,中系8541和中系8240之间在对光谱的吸收、叶片的光合作用量子转化效率,叶绿体的PSⅡ(光系统Ⅱ)潜在活性(Fv/F_0)和原初光能转化效率(Fv/Fm等的主要区别.实验结果说明,上述各光合作用参数中系8541都优于中系8240.不仅如此.在Mg~(2+)作用下,Fv/Fo和Fv/Fm比值的提高以及Mg~(2+)对两个光系统激发能分配的调节能力中系8541也强于中系8240.  相似文献   
3.
亚硫酸氢钠处理减轻低温对温州蜜柑光合作用的影响   总被引:12,自引:0,他引:12  
 低温胁迫使温州蜜柑叶片的净光合速率(Pn)、光系统Ⅱ的光化学效率(Fv/Fm)及光合电子传递速率(ETR)下降,反映跨膜质子动力势的叶绿素毫秒延迟发光(ms-DIE)减弱,叶片中的ATP含量降低。低温胁迫前,用NaHSO3 5 mmol/L涂于叶片表面,可使处理植株叶片的Pn和Fv/Fm分别少下降了11.5%和11.6%,ETR和ATP含量几乎没有下降,ms-DLE的下降幅度减少。可见,在柑橘上施用NaHSO3能够减轻短期低温对光合机构及光合作用的影响。  相似文献   
4.
水分条件对巴音布鲁克高寒湿地CO_2排放的影响   总被引:1,自引:0,他引:1  
在新疆天山中部巴音布鲁克天鹅湖高寒湿地,以苔草(Carex tristachya)为主要建群种的样地为研究对象,利用英国PP-systems公司生产的便携式土壤呼吸测定系统(CIRAS-2-SRC)研究了不同地表水分条件对天鹅湖高寒湿地夏季土壤CO2排放的影响。结果表明,1)湿润区的生物量大于干燥区;干燥区土壤CO2排放高于湿润区,干燥区土壤CO2排放日变化曲线为单峰曲线,CO2排放最高点出现在当地14:00-16:00,最高值为1.185 0g CO2·m-2·h-1;湿润区土壤CO2排放日变化曲线为双峰曲线,两个峰值分别出现在12:00和16:00,最高值为1.024 0g CO2·m-2·h-1。2)不同水分条件下生物量中凋落物含量影响土壤CO2排放。土壤温度是CO2排放的主要限制因子,且地表干燥区CO2排放与土壤温度的相关性更显著(P0.01)。土壤湿度与CO2排放相关性不显著(P湿润区=0.997,P干燥区=0.409)。  相似文献   
5.
Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA- and AOB-supported nitrification determined both in soil-water slurries and in unsaturated whole soil at field moisture. Soils were collected from stands of red alder (Alnus rubra Bong.) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) at three sites (Cascade Head, the H.J. Andrews, and McDonald Forest) on acidic soils (pH 3.9–5.7) in Oregon, USA. The abundances of AOA and AOB were measured using quantitative PCR by targeting the amoA gene, which encodes subunit A of ammonia monooxygenase. Total and AOA-specific (octyne-resistant) nitrification activities in soil slurries were significantly higher at Cascade Head (the most acidic soils, pH < 5) than at either the H.J. Andrews or McDonald Forest, and greater in red alder compared with Douglas-fir soils. The fraction of octyne-resistant nitrification varied among sites (21–74%) and was highest at Cascade Head than at the other two locations. Net nitrification rates of whole soil without NH4+ amendment ranged from 0.4 to 3.3 mg N kg−1 soil d−1. Overall, net nitrification rates of whole soil were stimulated 2- to 8-fold by addition of 140 mg NH4+-N kg−1 soil; this was significant for red alder at Cascade Head and the H.J. Andrews. Red alder at Cascade Head was unique in that the majority of NH4+-stimulated nitrifying activity was octyne-resistant (73%). At all other sites, NH4+-stimulated nitrification was octyne-sensitive (68–90%). The octyne-sensitive activity—presumably AOB—was affected more by soil pH whereas the octyne-resistant (AOA) activity was more strongly related to N availability.  相似文献   
6.
Nitrification plays a central role in global nitrogen cycle, which is affected by biological interaction between soil microfauna and microorganisms. However, the complexity of soil biotic communities made it difficult to reveal organizational principles of the community and the interactions among species. Here, we used the network analysis to decipher the interactions between nematodes and ammonia oxidizers within aggregate fractions under 10-year manure application, and examine their associations with soil variables and potential nitrification activity (PNA). Three aggregate fractions included large macroaggregates (>2000 μm, LA), small macroaggregates (250–2000 μm, SA), and inter-aggregate soil and space (<250 μm, IA). Aggregate factions showed a remarkable effect on association networks of nematodes and ammonia oxidizers. The average connectivity (avgK) and the number of edges in overall networks increased with increasing aggregate sizes, while the average geodesic distance (GD) followed the opposite trend. The LA network could be viewed as a better organized or a better operational soil food web with more functional interrelated members than the SA and IA networks. The modules related to PNA were significantly correlated and clustered together as meta-modules in networks of aggregate fractions. The role-shifts prevailed among the network members such as significant module memberships (MMs) and generalist/specialist operational taxonomic units (OTUs). A half of shared nodes were further identified as shared MMs, dominated by ammonia-oxidizing bacteria (AOB) especially for Nitrosospira cluster 3a and 10. Soil pH could explain partly the shift of module hubs in different networks, while grazing by bacterivores might account for three exclusively connecters related to Nitrososphaera clusters 1.1. The strongly coupled modules correlated positively to pH and total carbon (TC), regardless of aggregate fractions. The network analysis approach provided new insights into potential importance of network interactions between nematodes and ammonia oxidizers in soil nitrogen cycling.  相似文献   
7.
The environmental impact of crop production is mainly related to fossil fuels consumption and to fertilisers application. Emissions arising from the spreading of organic and mineral fertilisers are important contributors for impact categories such as eutrophication and acidification. The choice of the fertilisers and of the spreading techniques as well as the crop residues management can deeply affect the environmental impact related to crop cultivation.In this study, seven scenarios describing fertilising schemes characterised by different organic and mineral fertilisers and by different mechanisation were compared. The aim is to evaluate, using the Life Cycle Assessment (LCA) method, how the environmental performances of grain maize production were affected by these different fertilisers schemes. The study was carried out considering a cradle to farm gate perspective and 1 t grain maize was selected as functional unit. Inventory data were collected on a farm located in Po Valley (Northern Italy) during year 2013 and were processed using the composite method recommended by the International Reference Life Cycle Data System (ILCD). The compared scenarios involved organic and mineral fertiliser distribution and were: pig slurry incorporation after >3 days after spreading (BS), fast pig slurry incorporation within 2 h from spreading (AS1), direct soil injection of pig slurry (AS2), pig slurry incorporation (after >3 days) with straw collection (AS3), digestate spreading instead of pig slurry (after >3 days) (AS4), only mineral fertilisers (i.e. urea and superphosphate) distribution (AS5) and only mineral fertilisers (i.e. calcium ammonium nitrate and superphosphate) distribution (AS6).The results were not univocal, since climate and soil conditions as well as physical and chemical fertiliser characteristics differently affected the environmental load, especially for particulate matter formation, terrestrial acidification and terrestrial eutrophication impact categories. AS1 and AS2 showed the most beneficial results for these impact categories (between ↙67% and ↙73% respect to worst scenario). AS6, on the opposite, showed the highest environmental impact for those impact categories mainly affected by energy and fossil fuel consumption (climate change, ozone depletion, human toxicity with carcinogenic effect, particulate matter, freshwater eutrophication, freshwater ecotoxicity and mineral, fossil and renewable resources depletion), categories on which AS3 and AS4 were the best solutions. AS3 was the most impacting for terrestrial acidification and eutrophicationA sensitivity analysis was carried out varying grain maize yield (mostly affected: marine eutrophication) and ammonia volatilisation losses due to organic fertilisers (mainly affected: terrestrial acidification and eutrophication).The achieved results can be useful for the development of ⬓spreading rules⬽ that drive the application of organic fertilisers in agricultural areas where there is an intense livestock activity.  相似文献   
8.
分别采用GB 18580标准中的干燥器法和穿孔萃取法检测中密度纤维板的甲醛释放量,并根据两种方法检测出的结果分析其相关性。结果表明,两种检测方法呈显著线性相关。  相似文献   
9.
Perennial rhizomatous grasses (PRGs) tend to have a high yield combined with a low environmental impact. Cultivation in marginal or poorly cultivated land is recommended in order not to compromise food security and to overcome land use controversies. However, the environmental impacts of using different types of soil are still unclear. We thus assessed the environmental impact of two giant reed (GR) systems cultivated in a fertile soil (FS) and in a marginal soil (MS) through a cradle-to-plant gate LCA. We analyzed energy balance, GHG emissions (including LUC, not including iLUC), and the main impacts on air, water and soil quality. In both systems the annualized soil carbon sequestration was more than twofold the total GHG emitted, equal to −6464 kg CO2eq ha−1 in FS and −5757 kg CO2eq ha−1 in MS. Overall, soil characteristics affected not only GR yield level, but also its environmental impact, which seems to be higher in the MS system both on a hectare and tonne basis. The production of GR biomass in marginal soil could thus lead to higher environmental impacts and a more extensive land requirement.  相似文献   
10.
With the startup and execution of new socialistic countryside construction in Heilongjiang Province,the transition from castoff to resource is strengthened in the countryside,aiming at neat appearance of the countryside,clean production and saving energy.People produce biogas and provide the countryside with new energy by means of turning livestock's dejection into resources,composting of the plant and animal's leavings in the courtyard and even in the factory.It is helpful for the countryside to conserve t...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号