首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  6篇
综合类   1篇
  2013年   3篇
  2012年   2篇
  2006年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
To test the relative usefulness of different methods of chemical analysis for soil nitrogen fractions in the assessment of the fertilizer nitrogen needs of sugar beet, different doses of nitrogen were applied in field experiments laid out during the years 1985–1991. The chemical methods used were N mineral (NO 3 +NH + 4 ) analyses on soil samples taken in late winter, and extraction with 0.01 M CaCl2 from soil samples taken the preceding autumn and in late winter. The results of the chemical methods were evaluated in models using estimated optimum nitrogen fertilization, nitrogen present in beets or beets+leaves at leaf maximum and sugar yield as variables. In addition, parameters such as estimates of possible rooting depth and mineralization capacity of the soil were also included in the model. All models for estimating nitrogen fertilization need showed low R 2 values. The two methods of soil chemical analysis yielded similar R 2 values for nitrogen uptake in plots both with and without nitrogen fertilization. The N mineral method was least useful in predicting sugar yield. Addition of the covariables rooting depth and mineralization capacity appreciably improved the explanatory value of the models with 0.01 M CaCl2, especially when the analytical results of soil samples taken in autumn were used. For the N mineral method the addition of covariates was found to have far less influence.  相似文献   
2.
采用高温固相法合成Ba0.99MoO4∶0.01Pr3+荧光粉.利用XRD、荧光光谱和色度坐标研究了不同掺杂离子对荧光粉发光性能的影响.结果表明:掺杂少量的V(钒),W(钨),Ti(钛)和Co(钴)未影响到BaMoO4的晶体结构,但掺杂少量的V和W能有效地提高荧光粉的发光强度,Ti的掺杂虽然也能提高其发光强度,但效果不明显,Co的掺杂降低了其发光强度.在所有掺杂离子中,V的掺杂对荧光粉发光强度的提高效果最为明显,V在荧光粉中的最佳摩尔分数为0.08.样品中加入V能提高荧光粉的发光纯度,当V的摩尔分数为0.08时,红光效果最好.  相似文献   
3.
Twenty-one strains of fluorescent pigment-producing Pseudomonas (abbreviated to FPP-Pseudomonas) species were isolated from soil and roots of apple and peach trees using selective media. FPP-Pseudomonas strains were identified as Pseudomonas fluorescens. Moreover, on the basis of the utilization of several organic compounds, these strains were divided into three groups.

P. fluorescens strains isolated from the roots were assigned to mainly groups 1 and 2, and most of the isolates from the soil to group 3. All the strains of group 2 exhibited antifungal activity (in vitro) against three soilborne plant pathogenic fungi: Rhizoctonia solani, Verticillium dahliae, and Rosellinia necatrix. These results suggest that the strains of group 2 play an important role as antifungal rhizobacteria.  相似文献   
4.
ABSTRACT

The accumulation of potentially toxic elements (PTEs) in the soil can pose risks to human health, and precise risk assessment dealing with the production and consumption of plants is required. The 0.43 M of nitric acid (HNO?) solution was suggested by the International Organization for Standardization for reactive fraction of PTEs in the soil. The efficiency of some extractors was evaluated in tropical soils. Contents of barium (Ba), cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) were extracted in accordance with the methods of Environmental Protection Agency (EPA) 3051A, Aqua Regia, Diethylenetriaminepentaacetic acid (DTPA), Mehlich-1, Mehlich-3, 0.43 M HNO? and 0.01 M of calcium chloride (CaCl?), and these contents correlated with the contents of PTEs in roots, shoots, and fruits of vegetables. Mehlich-3 had the highest correlation with Ni and Zn contents extracted by the plants. Contents extracted with 0.43 M HNO? had high correlation with the amounts extracted by DTPA and Mehlich-3, as well as with the amounts of PTEs accumulated by plants.  相似文献   
5.
6.
Nonexchangeable potassium (K-ne), i.e. 1 M NH4OAc-nonexchangeable K, often contributes significantly to plant nutrition. However conventional extraction methods often extract much more K-ne than plants even after intensive cropping, suggesting the difficulty in evaluating the amount of readily available soil K-ne. In this study, we used a milder extraction method (0.01 M HCl method) to examine its applicability to evaluate the amount of readily available K-ne in soil. In the first experiment, the concentration of K-ne in twenty surface soils sampled from agricultural fields in Japan and K-bearing minerals was determined by the 0.01 M HCl method, i.e. sequential extraction with 0.01 M HCl over a period of 10 d after removal of exchangeable K, and by conventional methods. The average percentage of the soil K-ne extracted by the 0.01 M HCl method amounted to 0.66% of the total K amount, and was much lower than that by a single extraction with 1 M HNO3 (2.0%) or with 0.2 M sodium tetraphenylboron for 2 d (22%). In the second experiment, the amount of K-ne removed by chemical extractions was compared with that of K-ne removed by maize plants grown for 29 d in five of the above soils. The amount of the K-ne evaluated by the 0.01 M HCl method gave the highest correlation (p < 0.05) with that of the K-ne utilized by plants among the extraction methods applied. The amount of soil K-ne extracted by the 0.01 M Hel method could therefore become a suitable index of the amount of readily available K-ne in soil. Extraction of K-ne in soils after maize planting further indicated that plants had removed K-ne more intensively than the 0.01 < HCl method probably only from the rhizosphere, although a high correlation was observed between the amount of K-ne removed by the 0.01 M Hel method and that by plants. This implies that the estimation of the amount of K-ne utilized by plants requires not only soil chemical analysis but also the evaluation of the percentage of the soil volume where the plant-induced release of K-ne actually occurs.  相似文献   
7.
Calcium chloride–extractable (1:10 soil/solution ratio, w/v) nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), organic nitrogen (EON), and Ntotal fractions were measured in two long-term experiments. Both experiments are located in the Great Hungarian Plain. The first experiment was established on a Luvic Phaeozem soil and the second experiment was on a Calcic Chernozem soil. Researchers investigated the effects of long-term fertilization and irrigation on the amounts of nitrogen (N) fractions. Nitrogen rates caused significant increase in NO3-N and Ntotal fractions. These fractions were in close correlation (r = 0.87; r = 0.88) with nitrogen balance. The nitrate content of the 200-cm-deep soil layer of soils under different nitrogen- and water-supply conditions were also studied. As an effect of N overfertilization, the maximum nitrate accumulation on nonirrigated plots occurred in the 200-cm depth, whereas on irrigated plots a nitrate accumulation layer could not be observed in the 200-cm-deep soil layer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号