首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  国内免费   4篇
林业   1篇
基础科学   7篇
  4篇
综合类   1篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
基于多体接触碰撞的松软地面车轮沉陷仿真   总被引:1,自引:0,他引:1  
提出了一种大规模多体系统接触碰撞理论与车辆地面力学理论相结合的仿真方法,并基于多体动力学仿真平台开发了车轮土壤相互作用仿真模块。基于该方法建立的土壤动力学模型和车轮土壤接触碰撞模型,进行了车轮沉陷的仿真。根据记录,在普通配置台式计算机上模拟土槽系统30 s的运动,仅需20 min。在相同实验条件下,仿真结果与土槽实验结果趋势一致,仿真曲线与土槽实验曲线吻合良好。由此表明该仿真算法能够满足越野行驶仿真的需要。  相似文献   
2.
滑转条件下星球车坡面通过性评估试验   总被引:1,自引:1,他引:0  
星球车是执行深空探测任务的主要移动平台,针对星球表面崎岖地形地貌,开展滑转条件下星球车坡面沉陷研究,确保其安全通过性能具有重要意义。基于传统地面力学研究方法,以速度和坡度为试验因素,车轮滑转率和沉陷为试验指标,开展滑转条件下的缩比星球车坡面沉陷试验;分析了试验因素对各车轮滑转率影响,以及不同滑转率和速度条件下沉陷变化规律,建立了滑转率关于坡度的一元二次模型。结果表明,模型车前轮和中间轮的滑转率随速度和坡度变化趋势总体趋于一致,与后轮滑转率变化趋势明显不同。坡度为25°时,前轮和中间轮滑转率最大值达到92.3%,后轮相应的最大滑转率为61.8%。试验条件下,各车轮沉陷最大值分别为33.1 mm(前轮)、33.9 mm(中间轮)和13.6 mm(后轮);当滑转率的范围为25%~60%时,前轮和中间轮沉陷增加的较为平缓,平均增加率为22.5%,对于后轮滑转率超过35%后,沉陷变化较小,波动范围为?1.3~1.8 mm;速度对各车轮沉陷的影响明显较滑转率的小,沉陷的相对变化率范围为?12.5%~10.7%。该研究可为低重力环境下星球车研制、坡面通过性评估提供参考。  相似文献   
3.
基于贝克理论履带沉陷性能研究   总被引:2,自引:0,他引:2  
地面力学是研究车辆与地面相互作用的边缘学科,履带-地面相互作用是其中较为重要的一个分支。经过对地面力学的研究与总结,发现履带车辆在松软土壤上行驶时,应该采用大履刺履带行走机构,但目前学者们往往忽视了履刺的作用,进行的研究工作较少。基于贝克理论和研究方法,应用力学平衡方法,提出松软土壤条件下大履刺履带压力-沉陷的关系式。采用赋值法解决变形系数为非整数时沉陷量的预测问题。可为大履刺履带车辆沉陷性能和履带结构参数优化提供理论依据。  相似文献   
4.
均质土壤承压下陷模型改进及验证   总被引:1,自引:1,他引:0  
针对传统土壤承压模型依赖拟合原位承载试验曲线的复杂性或建立在土壤力学参数基础上的预测模型的理想化等问题,该文提出一种改进的土壤承压下陷模型。依据地面力学和土壤力学相关理论将土壤承压力学模型分3类进行简要介绍,分析其各自特点和参数意义。结合土壤承压极限理论的指数形式,提出改进的土壤承压模型。利用庄继德等人的相关试验研究结果进行验证,结果表明砂性土、水稻土的土壤承压下陷计算预测曲线与实际拟合曲线吻合度较好,其中砂土试验的Bekker下陷曲线与改进模型计算所得曲线的决定系数R2为0.9998;利用Bekker文献中的黏性土试验参数数据进行验证,计算所得土壤极限应力值与相应位置贝氏方程拟合应力值误差在5%~21%之间,土壤变形指数求解值与实际值误差在7%~36%之间。该模型普适性、准确性较强,可在测得土体基本力学参数的基础上预测载荷下陷曲线,为研究车辆行驶下陷提供参考。  相似文献   
5.
主要对我国南方蔗田的承压特性进行了研究.通过对不同地形的3块蔗田进行了大量的试验,推导出适合于我国南方蔗田的压力下陷预测公式.通过预测公式对这3块蔗田的下陷进行了对比分析,并利用公式对同一块蔗田雨后不同时间间隔的下陷进行了分析,旨在为下一步的小型甘蔗收割机的履带与土壤相互作用关系的研究进行一定的前期准备工作.  相似文献   
6.
筛网轮具有质量轻、转向阻力小等优点,但其在松软干沙路面上的牵引通过性研究比较少。本文设计了轻型轮壤土槽测试系统,以车轮沉陷量、驱动扭矩、挂钩牵引力和牵引系数为指标,在土壤松散和自然状态下进行筛网轮和圆柱轮牵引通过性对比试验,基于轮辙非接触测量获取筛网轮表观沉陷量。结果表明:试验条件下,筛网轮实际沉陷量范围分别为13.1~26.3mm(松散状态)和8.1~18.7mm(自然状态),较圆柱轮平均分别增加了26.4%(松散状态)和22.7%(自然状态);随着滑转率的增加,筛网轮表观沉陷量呈现减小趋势,圆柱轮则呈现先增加后减小趋势。车轮驱动扭矩、挂钩牵引力随着滑转率的增加而增加,牵引系数呈现先增加后减小趋势;筛网轮驱动扭矩最大值分别为3.18N·m(松散状态)和3.76N〖DK〗·m(自然状态),筛网轮挂钩牵引力最大值分别为8.46N(松散状态)和9.9N(自然状态),自然状态土壤较松散状态时挂钩牵引力平均提高了16.7%;与筛网轮相比,圆柱轮驱动扭矩较筛网轮平均提高了45.2%,挂钩牵引力则平均提高了30.9%(松散状态)和33.6%(自然状态);筛网轮牵引系数明显较圆柱轮大,自然状态下筛网轮牵引系数最大值为0.29,较松散状态下提高了17.9%。综合考虑车轮沉陷量、牵引系数的影响,筛网轮在干沙路面上比圆柱轮具有更好的牵引通过性。  相似文献   
7.
重塑土壤承压模型的建立与试   总被引:2,自引:1,他引:2  
使用小面积压板在重塑软粘土中进行压板沉陷试验,分析压板尺寸、土壤含水率、土壤密度及样筒筒径对土壤承载力的影响.试验曲线拟合表明重塑土壤的承压特性满足二阶多项式模型.由拟合方程分析可知,模型各项系数随含水率呈对数变化、随土样密度呈线性变化、随着密度和含水率的耦合关系呈对数变化,筒径变化使二次项系数符号发生变化.大田实际土壤的试验表明,其承压曲线也满足二阶多项式模型.  相似文献   
8.
基于有限元理论分析了土壤在承受垂直和水平复合载荷下的变形规律。首先通过平板沉陷试验分析确定土壤在垂直载荷作用下的载荷-变形关系,接着考虑水平载荷的影响,通过剪切试验确定土壤的复合载荷-变形关系。研究结果表明,水平载荷会造成土壤的滑动沉陷,水平剪切位移与土壤的滑动沉陷量之间呈线性关系。对影响滑动沉陷量的因素进行了分析,其中影响比较大的因素是垂直方向的载荷以及土壤的塑性参数:黏聚力和摩擦角,而土壤的弹性参数:弹性模量和泊松比对滑动沉陷量的影响比较小。  相似文献   
9.
为研究轻型地面车辆松软地面通过性能,针对轻载荷条件建立车轮牵引通过性预测模型,该文采用轮上载荷为30~90 N的轻载荷条件,以轮上载荷和轮径度为试验因素,车轮沉陷、挂钩牵引力和牵引效率为试验指标,开展滑转条件下轮壤相互作用试验研究。分析了试验因素对车轮牵引通过性的影响规律,发现载荷因素对试验指标的影响最为显著,显著性检验的置信度达90%。沉陷随着轮径的减小以及轮上载荷和滑转率的增加,车轮沉陷均呈现增加趋势,平均相对增加率分别为14.3%、36.9%和77.4%。挂钩牵引力随着载荷、滑转率和轮径的增加平均提高了约263%、295%和29.71%,牵引效率最大值均值为0.23,对应的滑转率为26.86%。基于传统沉陷模型和轮壤接触应力分布线性化公式,结合车轮土槽试验结果,建立了适合滑转条件的沉陷模型,模型计算值与试验值残差低于3.6 mm,平均相对误差小于6.4%,结果表明该模型能准确预测轻载荷条件下车轮沉陷。该研究为轻型车辆研制、轻载荷条件下车轮牵引通过性评估提供了参考。  相似文献   
10.
轮面曲率半径对沙地刚性轮沉陷性能影响研究   总被引:1,自引:0,他引:1  
轮面曲率半径对沙地刚性轮的沉陷性能影响至关重要。通过轮面承压试验、轮壤台架动态试验和离散元数值模拟分别对6种不同轮面曲率半径的平面、凹面和凸面沙地刚性轮在3种不同颗粒形状及粒径大小沙土上的沉陷性能进行分析。在轮面承压试验中,相比其他轮面曲率半径的车轮,平面轮在细径石英砂和粉尘状火山灰上的抗沉陷性能均最好。与其他沙土介质相比,粗径石英砂上所有轮面车轮的沉陷量最小。轮面承压模拟结果表明,平面轮下沙土颗粒的力场分布均匀,轮下颗粒溢出量小,有效说明平面轮沉陷量最小的原理。在细径石英砂轮壤台架动态试验中,凹面R80车轮在行驶初期(位移小于50 cm)沉陷量最小,行驶到稳定状态后(位移大于70 cm),凹面R60车轮的动态沉陷量最小;在粉尘状火山灰轮壤台架动态试验中,凹面R60车轮在整个运动范围内的沉陷量最小。因此,在细径石英砂和粉尘状火山灰上行驶过程中,轮面曲率半径较大的凹面轮的抗沉陷性能较好。此外,由车轮行驶在细径石英砂离散元模拟可知,凹面轮的受力区域集中在轮面两侧,轮面内凹结构可有效防止沙土侧向流动并减小对沙土的扰动。本文研究不仅为承压和行驶条件下不同曲率半径轮面的车轮在沙土介质上的沉陷性能判断提供参考依据,而且为沙漠或者深空探测车辆轮/胎的轮面结构设计提供重要理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号