首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
林业   2篇
  10篇
水产渔业   1篇
园艺   1篇
  2023年   3篇
  2021年   2篇
  2019年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Lampreys have a complex life cycle which includes a multi‐year infaunal larval stage (ammocoete). Gut content analysis has generally identified detritus (i.e., unidentifiable organic matter) as the major dietary component to ammocoetes, though algae can also be important. However, gut content preserves only a snapshot of the animal's diet and does not reflect assimilated material. In order to better characterise the nutritional sources supporting ammocoete growth, we analysed ammocoete body tissue and potential dietary sources at two streams using natural Δ14C and δ15N to estimate time‐integrated nutritional support. Bayesian isotope mixing models revealed differences in the importance of sources supporting ammocoetes between sites. Ammocoetes from a stream in a mixed land usage area (~50% agriculture, ~40% forest and ~10% developed) were primarily supported (mean: ~50%) by fresh terrestrial organic matter but were also supported by substantial contributions (mean: ~30%) by aged organic matter (AOM) and autochthonous material (algae; mean ~20%). In a predominantly forested (~90%) headwater stream, different modelling scenarios (uninformed or informed priors) suggested that algal support of ammocoete nutrition ranged from 7% to 45%. However, the model relying on informed priors developed from gut content analysis produced the low estimates, suggesting these were more reliable. When algae were a minor component of the nutrition at the forested site, ammocoetes were highly dependent on AOM (83 ± 26%; mean ± SD). Based on these findings, ammocoete growth and development are predicted to be strongly influenced by both land use and the availability of allochthonous and autochthonous materials of varying ages within streams.  相似文献   
2.
3.
我国土壤放射性碳年龄   总被引:2,自引:0,他引:2       下载免费PDF全文
刘良梧  茅昂江 《土壤学报》2001,38(4):506-513
我国地域辽阔 ,土壤类型众多。土壤中不仅含有有机质和腐殖质 ,而且许多土壤中还含有丰富的钙质结核、分散碳酸盐以及贝壳、珊瑚等可供放射性碳断代的良好对象。土壤有机和无机1 4 C年龄研究表明 ,我国大多数土壤是全新世时期的产物。其中又以全新世中期和晚期的土壤占绝对优势。人为土纲中的土壤年龄与六千余年来我国悠久的农业耕种历史密切相关。相比之下 ,只有少数土壤形成于晚更新世晚期。而另一些土壤有数个形成、发育阶段 ,它们的年龄自然亦就跨越不同的地质时期 ,具有多元化的特点。  相似文献   
4.
We investigated how organic matter may, directly and indirectly, modify the porosity of Ferralsols, that is, deeply weathered soils of the tropics and subtropics. Although empirical and anecdotal evidence suggests that organic matter accumulation may increase porosity, a mechanistic understanding of the processes underlying this beneficial effect is lacking, especially so for Ferralsols. To achieve our end, we leveraged the fact that the Profundihumic qualifier of Ferralsols (PF) is distinguished from Haplic Ferralsols (HF) by both a much larger average carbon content in the first 1 m of soil depth (19 kg C m−3 in PF vs. 10 kg C m−3 in HF) and a significantly lower bulk density (1.05 ± 0.08 kg L−1 in PF vs. 1.21 ± 0.05 kg L−1 in HF). Through exhaustive modelling of carbon – bulk density relationships, we demonstrate that the lower bulk density of PF cannot be satisfactorily explained by a simple dilution effect. Rather, we found that bulk density correlated with carbon content when combined with carbon: nitrogen ratio (r2 = 0.51), black carbon content (r2 = 0.75), and Δ14C (r2 = 0.81). Total pore space was greater in PF (61 ± 3%) than in HF (55 ± 2%), but x-ray computed tomography revealed that pore space inside soil aggregates of 4–5 mm diameter does not vary between the studied Ferralsols. We further observed nearly twice as many roots and burrows in PF compared with HF. We thus infer that the mechanism responsible for the increase in porosity is most likely an enhancement of resource availability (e.g., energy, carbon, and nutrients) for the organisms (earthworms, ants, termites, etc.) that physically displace soil particles and promote soil aggregation. As a result of increased resource availability, soil organisms can create especially the mesoscale structural soil features necessary for unrestricted water flow and rapid gas exchange. This insight paves the way for the development of land management technologies to optimize the physical shape and capacity of the soil bioreactor.  相似文献   
5.
6.
Quantitative information about the amount and stability of organic carbon (OC) in different soil organic‐matter (OM) fractions and in specific organic compounds and compound‐classes is needed to improve our understanding of organic‐matter sequestration in soils. In the present paper, we summarize and integrate results performed on two different arable soils with continuous maize cropping (a) Stagnic Luvisol with maize cropping for 24 y, b) Luvic Phaeozem with maize cropping for 39 y) to identify (1) the storage of OC in different soil organic‐matter fractions, (2) the function of these fractions with respect to soil‐OC stabilization, (3) the importance and partitioning of fossil‐C deposits, and (4) the rates of soil‐OC stabilization as assessed by compound‐specific isotope analyses. The fractionation procedures included particle‐size fractionation, density fractionation, aggregate fractionation, acid hydrolysis, different oxidation procedures, isolation of extractable lipids and phospholipid fatty acids, pyrolysis, and the determination of black C. Stability of OC was determined by 13C and 14C analyses. The main inputs of OC were plant litter (both sites) and deposition of fossil C likely from coal combustion and lignite dust (only Phaeozem).  相似文献   
7.
红树林恢复过程中土壤有机碳的变化   总被引:1,自引:0,他引:1  
Based on total carbon (C) and C isotopes in sediment cores, sedimentary organic carbon (SOC) was quantified in three types of mangrove sites (barren flat sites without mangroves, mangrove plantations, and natural mangrove forests), which were considered to represent a continuum from least restored to most restored sites in southern China. SOC densities in the barren sites, plantations, and natural forests were 90, 170 and 288 Mg ha-1, respectively. We inferred that mangrove restoration increased SOC accumulation in coastal areas. At 0--70 cm depth, SOC ?13C values in both mangrove sites ranged from -27.37‰ to -23.07‰, and exhibited gradual enrichment with depth. In contrast, the values in the barren flat sites remained around -22.19‰ and fluctuated slightly with depth. At 0--60 cm, the 14C ages of the SOC in the barren flat site, the natural mangrove site, and the artificial mangrove site ranged from 1 397 to 2 608, 255 to 2 453, and 391 to 2 512 years BP, respectively. In both types of mangrove sites but not in the barren flat sites, the enrichment of ?13C with depth was related to increases in SOC decay and SOC age with depth. According to analysis of 14C age, much of the mangrove-derived C was transported and stored at 0--60 cm depth under anaerobic conditions in both mangrove sites. The sediments of mangrove forests in southern China sequester large quantities of SOC during mangrove restoration.  相似文献   
8.
9.
基于美国材料实验协会ASTM D6866标准,利用超低本底液体闪烁技术,测定不同原料来源的泡沫材料中放射性碳同位素~(14)C含量,转化为生物基含量,从而用于鉴别生物基泡沫材料。实验中,分别利用元素分析和热重分析确定样品用量及其氧化燃烧温度,样品燃烧后产生的二氧化碳经过一系列化学反应合成为液体苯,通过测定合成苯中的放射性碳同位素~(14)C含量来区别鉴定生物质基泡沫材料和石油基泡沫材料,同时测定本底物质煤炭和标准物质糖碳中的~(14)C含量。结果表明:采用该方法测定的糖碳标准物质的~(14)C放射性活度值与标准值一致,由生物质基泡沫材料的~(14)C放射性活度值测定结果计算得到的生物基含量结果与美国Beta实验室采用加速器质谱(AMS)方法测试的结果一致。4种泡沫样品的生物基含量分别为18.77%、23.51%、5.39%和11.13%,全部为生物质基泡沫材料。说明利用该方法能够鉴别生物质基泡沫材料与石油基泡沫材料。  相似文献   
10.
This article pertains to the fluvial dynamics of rivers in southern Québec, in particular to the aggradation and pedogenetic processes observed in floodplains affected by periodic floods. The frequency of flood events, notably along the Saint-François River and its main tributaries, leads to fine materials being frequently deposited on floodplains and affected development of alluvial soils. Particle size and physical and chemical analyses have led to a better understanding of the dynamics involved in the formation of floodplains and the development of soils related to this fluvial environment. Also, sedimentological analyses (layer texture and thickness, microstructure) combined with radiocarbon dating (14C) and isotopic methods (210Pb, 226Rd) enabled the determination of sedimentation rates along the floodplains. The radiocarbon dating results obtained from the organic layers buried in alluvial soils show relatively variable ages, i.e. between 2210 ± 60 and 30 ± 70 years BP. The data gathered reveal an active overbank deposition, which shows evidence of the high flood recurrence in many rivers of the basin. It is estimated that the annual floodplain aggradation ranges from 1.0 to 7.6 mm yr− 1 on average, which causes increases in floodplain elevations (vertical accretion). The sedimentation rates obtained using the constant rate supply dating model (210Pb) show average values that range from 2.1 to 10.7 mm yr− 1. Also, the presence of contaminated layers at the lower level (> 100 cm) of the floodplains suggested an active sedimentation rates along the rivers affected by floods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号