首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2013年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

Evaluation of the plant-available phosphorus (P) in calcareous soils is commonly performed by removing a portion of solid phase P using chemical extractants. Critical soil test values, however, may be affected by variation in sorption and buffering behavior of different soils. The objective of this study was to evaluate the importance of buffering capacity indices to predict P uptake by wheat (Triticum aestivum). Eleven surface soil samples were assayed for a number of P intensity (CaCl2-P) and quantity (Olsen-P, Colwell-P, and Resin-P) factors. Some phosphorus buffering indices were obtained from P sorption equations. A single-point index of buffering was also determined experimentally. In a greenhouse experiment, wheat was grown for 35 and 70 days on the same soils and P uptake was determined. Nonlinear and linear equations described the P sorption data (P < 0.001). Buffering indices derived from these equations were highly correlated with single-point index of capacity. Clay content was the most important soil property affecting the buffering capacity factor. The phosphorus intensity index (CaCl2-P) was weakly related to P uptake (P < 0.05). Among the quantity factors only Resin-P was significantly correlated with P uptake. Buffering indices showed significant but inverse relationships with P uptake only at 70 days harvest (r = ?0.69 to ?0.71; P < 0.05). Combination of intensity or quantity factors with buffering capacity indices, such as intensity/capacity or quantity/capacity indicators, improved considerably the ability to account for variations in P uptake by wheat.  相似文献   
2.
Abstract

Improving phosphorus (P) fertilizer efficiency while minimizing environmental impacts requires better understanding of the dynamics of applied P in soils. This study assessed the fate of fertilizer P applied in Quebec Humaquepts. A pot experiment with five textural Humaquepts, each receiving 0 (P0), 10 (P10), 20 (P20) and 40 (P40) mg P kg?1 soil was conducted under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. The clayey soils reached a plateau of dry matter at less P applied than the coarser-textured soils. Plant P uptake, soil labile inorganic P (resin-P?+?NaHCO3-Pi) and moderately labile inorganic P (NaOH-Pi) increased proportionally with P rate. The coarser-textured soils had lower contents of labile and moderately labile Pi, but a larger increase in labile Pi than the finer-textured soils after receiving P additions. The applied P was retained primarily as soil labile Pi, accounting for 43–69% of total soil recovery of applied P, compared to 20–30% recovered as moderately labile Pi, and 7–29% assumed to be sparingly soluble P (HCl-P?+?H2SO4-P). The labile Pi recovery of applied P was linearly depressed with clay content, compared to a quadratic relation for the moderately labile Pi recovery. The results suggest the importance of accounting for soil texture along with soil P adsorption capacity when assessing the efficiency of applied P, P accumulation in soils and subsequently P nutrient management.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号