首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  国内免费   4篇
林业   5篇
农学   1篇
基础科学   1篇
  4篇
综合类   8篇
农作物   1篇
水产渔业   3篇
畜牧兽医   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1998年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
分别从机内净化、排气后处理、改善燃油品质三个方面分析了近年来降低柴油机微粒排放的研究现状。  相似文献   
2.
为了研究臭氧对循环水养殖系统中悬浮颗粒物的净化效果,探讨臭氧对悬浮颗粒物的影响机理,在养殖水体投加不同量的臭氧进行实验室小规模模拟实验,对水体的TSS、浊度等指标进行检测,并对悬浮颗粒物进行粒度分析。结果表明投加臭氧有助于降低水体浊度,投加7.53mg/L臭氧可将浊度为(5.22±0.55)NTU的原水降低浊度12.47%,投加15.05mg/L和22.58mg/L 臭氧则可提高到25.31%和30.20%。投加臭氧将影响悬浮颗粒物的物理特性,在投加22.58mg/L臭氧时对颗粒物助凝效果显著,将悬浮颗粒物粒径大多分布在48-68um范围的原水转变成99.22%数量的颗粒物粒径>64um,有利于后续物理过滤处理。本研究明确了臭氧对悬浮颗粒物的净化效果是通过氧化有机物产生络合沉淀和胶体絮凝物等改变颗粒物的粒径大小分布的途径来实际的,为臭氧在循环水养殖系统中的应用提供理论支撑。  相似文献   
3.
对自行设计的牙鲆Paralichthys olivaceus循环养殖系统采用斜板式沉淀槽、水力旋流器、泡沫分离器去除固体颗粒物的效果进行了研究。结果表明:该系统实际运行过程中,养殖槽的固体颗粒物含量小于10 mg/L;对养殖水中总悬浮固体颗粒物的去除能力,沉淀槽最强,去除量(干重,下同)为(11.3±3.5)g/d,占69.2%,水力旋流器为(4.8±1.0)g/d,占29.5%,泡沫分离器为(0.2±0.1)g/d,占1.3%;对难沉降颗粒物的去除能力,泡沫分离器较强,去除量为(4.2±1.1)g/d,占53.1%,其中挥发性悬浮固体占93.2%,沉淀槽为(3.6±0.7)g/d,占44.8%,水力旋流器为(0.2±0.0)g/d,占2.1%;牙鲆摄食饲料所产生的固体废物量(干重)约为245.8 g/kg。  相似文献   
4.
采集了甲醇/生物柴油(5%、10%、15%)混合燃料在柴油机燃烧的尾气颗粒。采用热重分析仪和切线法、Flynn-Wall-Ozawa(FWO)热解动力学方法,研究颗粒挥发及氧化规律,分析了颗粒热解特征温度和活化能。结果表明:随着甲醇掺混量的增加,颗粒中H_2O的质量分数由2.6%增加到3.5%,可溶有机物(soluble organic fraction,SOF)质量分数由26.1%增加到32.5%,SOF的质量变化速率增大,对应的峰值温度后移;在O_2氛围中,SOF挥发阶段与在N2氛围中的表现基本一致,但质量变化速率明显增大;碳烟(soot)质量减小,由70.3%减少到63.8%,soot质量变化率峰值增大;SOF析出温度变化较小,soot起始燃烧温度明显降低,由488℃降低到458℃,SOF起始燃烧温度与燃尽温度均有所降低,颗粒的热解总反应时间缩短;颗粒的热解反应活化能由140.3 k J/mol降低117.3 k J/mol,颗粒的热解性能增强,颗粒更易被氧化。研究结果可为甲醇/生物柴油燃烧颗粒的处理及柴油机颗粒捕集器(diesel particulate filter,DPF)再生提供依据。  相似文献   
5.
为合理规划城市绿地,有益于人们户外活动,研究了不同类型城市绿地空气负离子浓度的日变化,不同类型城市绿地空气负离子浓度、温度、湿度、可吸入颗粒物、氮氧化物、二氧化硫、噪声的差异。结果表明:空气负离子浓度日变化均较明显,不同类型绿地空气负离子浓度、温度、湿度存在显著差异,生物群落越丰富、树龄越大、植被郁闭度越高则空气负离子浓度、湿度越高,温度越低;由枝叶茂盛的高大乔木组成的林地,其空气负离子水平和空气质量较好。空气可吸入颗粒物、氮氧化物、二氧化硫及噪声污染与植被有一定的相关性,相关关系不显著。    相似文献   
6.
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost‐effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm. A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow‐through system compared with a recirculating system. In the flow‐through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28–35.2 µm) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae‐filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.  相似文献   
7.
Summary

We utilized the Boise National Forest's Hazard/Risk model, along with fire history records and fire behavior models, to estimate the current and anticipated levels of large wildfires and associated greenhouse gas and particulate emissions based on the forest condition and wildfire regime on the BNF. The model indicated that the forests at greatest risk of large, intense wildfires are the dense pondero-sa pine-Douglas-fir forests that make up over 1.1 million acres on the forest. We conclude that without an aggressive treatment program to reduce large areas of contiguous heavy fuel loadings the forest will be burned at an annual average rate of about 7.5% of the remaining at-risk forest. Using recent fire data to develop average patterns of intensity in wildfires within this forest type, we estimate that emissions will average around 1 million tons of carbon (C) per year over the next 20 years as the bulk of the ponderosa pine forests are burned. An aggressive treatment program featuring the removal of fuels where necessary, and prescribed fire as a means of re-introducing fire to these ecosystems, would result in a 30-50 percent reduction in the average annual wildfire experienced in the dense ponderosa pine forests, a 14-35% decrease in the average annual C emissions, and a 10-31% decrease in particulate emissions. We argue that the most effective way to curb emissions is with an aggressive treatment program linked to a landscape-based ecosystem management plan. This would have the effect of breaking up large contiguous landscape patterns so that fires become more patchy and diverse in their environmental impact, resulting in significantly reduced emissions as well as improved landscape diversity.  相似文献   
8.
大气颗粒物中有机污染物及自由基的检测   总被引:3,自引:1,他引:2  
采用毛细管气相色谱-色质联手技术,分析了济南地区大气瓢尘及降尘中有机污染物的化学组成,共检测出170多种有机污染物,包括烃,酸,酞酸酯,醇,醛,酮,酚,酰胺,苯,萘及其衍生物,硝基化合物,联苯及其衍生物,三苯,茚,芘,芴菲,蒽以及苯并芘等多环芳烃化合物。  相似文献   
9.
A laboratory-scale recirculating aquaculture system for fluidised bed biofilter evaluation was engineered. The design included all components found in typical full-scale commercial production systems. The system included two identical units each with oxygenation, UV treatment, cooling, biofiltration and a particulates separation device. Water from the two systems was mixed in a degassing unit. A 1 month test period after biofilter maturation revealed stable concentrations of total ammonia nitrogen (TAN), nitrite and nitrate within the system. Mean nitrification rate was 0.27 and 0.21 g TAN m−2 day−1. Oxygen consumption in the biofilters ranged between 56 and 64% due to nitrifying activity. Mass balances on nitrogen indicated that 48%, added via the feed, was converted to nitrate within the system, with 6% of the added nitrogen being found in the sludge. The remaining 43% was either used during fish growth, left the system, as organic nitrogenous compounds (or unidentified nitrogenous compounds), via the outlet, or was lost to the atmosphere. At least 61% of the nitrate produced was generated by the biofilters. The system proved to be an exceptional set-up for evaluation of the performance of fluidised bed biofilters, allowing both pre- and post-filter measurements of various water quality criteria.  相似文献   
10.
It is an urgent priority to establish in vivo bioassays for detection of hazards related to fine particles, which can be inhaled into deep lung tissue by humans. In order to establish an appropriate bioassay for detection of lung damage after particle inhalation, several experiments were performed in rats using quartz as a typical lung toxic particle. The results of pilot experiments suggest that Days 1 and 28 after intratracheal instillation of 2 mg of fine test particles in vehicle are most appropriate for detection of acute and subacute inflammatory changes, respectively. Furthermore, the BrdU incorporation on Day 1 and the iNOS level on Day 28 proved to be suitable end-point markers for this purpose. An examination of the toxicity of a series of particles was performed with the developed bioassay. Although some materials, including nanoparticles, demonstrated toxicity that was too strong for sensitive assessment, a ranking order could be clarified. The bioassay thus appears suitable for rapid hazard identification with a possible ranking of the toxicity of various particles at single concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号