首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
林业   1篇
  10篇
综合类   2篇
农作物   1篇
植物保护   1篇
  2019年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2007年   1篇
  2005年   2篇
  1999年   1篇
  1996年   2篇
  1992年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Benefits of organic farming on soil fauna have been widely observed and this has led to consider organic farming as a potential approach to reduce the environmental impact of conventional agriculture. However, there is still little evidence from field conditions about direct benefits of organic agriculture on soil ecosystem functioning. Hence, the aims of this study were to compare the effect of organic farming versus conventional farming on litter decomposition and to study how this process is affected by soil meso- and macrofauna abundances. Systems studied were: (1) organic farming with conventional tillage (ORG), (2) conventional farming with conventional tillage (CT), (3) conventional farming under no-tillage (NT), and (4) natural grassland as control system (GR). Decomposition was determined under field conditions by measuring weight loss in litterbags. Soil meso- and macrofauna contribution on decomposition was evaluated both by different mesh sizes and by assessing their abundances in the soil. Litter decomposition was always significantly higher after 9 and 12 months in ORG than in CT and NT (from 2 to 5 times in average), regardless decomposer community composition and litter type. Besides, mesofauna, macrofauna and earthworm abundances were significantly higher in ORG than in NT and CT (from 1.6 to 3.8, 1.7 to 2.3 and 16 to 25 times in average, respectively for each group). These results are especially relevant firstly because the positive effect of ORG in a key soil process has been proved under field conditions, being the first direct evidence that organic farming enhances the decomposition process. And secondly because the extensive organic system analyzed here did not include several practices which have been recognized as particularly positive for soil biota (e.g. manure use, low tillage intensity and high crop diversity). So, this research suggests that even when those practices are not applied, the non-use of agrochemicals is enough to produce positive changes in soil fauna and so in decomposition dynamics. Therefore, the adoption of organic system in an extensive way can also be suggested to farmers in order to improve ecosystem functioning and consequently to achieve better soil conditions for crop production.  相似文献   
2.
In a field study using soil mesocosms in an acid spruce forest soil we investigated the effects of mesofauna and macrofauna on microbial biomass, dissolved organic matter, and N cycling. Intact soil monoliths were taken from the ground, defaunated by deep-freezing, and wrapped in nets of various mesh-sizes to control re-immigration of different faunal size-classes. The monoliths were then replanted in the field. Three treatments of mesocosms were prepared: (1) with only microbiota, (2) microbiota and mesofauna, and (3) microbiota, mesofauna, and macrofauna (= complex fauna). After 8 months of exposure the mesocosms and the unmanipulated control plots (treatment 4) were destructively sampled. We estimated microbial biomass by substrate-induced respiration and the chloroform fumigation-extraction method. N cycling was measured by monitoring microbial N mineralization, the NH inf4 sup+ content, and selected amino acids and the activities of protease, urease, and deaminase. The results from the L/F layer showed that the pool of the microbial biomass was not changed by the activity of the mesofauna. However, the mesofauna and macrofauna together enhanced SIR. An increase in microbial N mineralization was only observed in treatment 3 (microbiota + complex fauna). Protease activity and NH inf4 sup+ content increased in treatments 2 (microbiota + mesofauna) and 3 (microbiota + complex fauna). The complex fauna induced a soil pH increase in treatment 3 as opposed to treatment 1 and the control. This increase was presumably due to excretory NH inf4 sup+ . Principal component analysis revealed that the complex fauna in treatment 3 caused a significantly higher N turnover per unit of microbial biomass.  相似文献   
3.
4.
Living mulch is a type of sustainable farming system that consists of cover crops planted either before or with a main crop; a living mulch is maintained as a living ground cover throughout the growing season of the main crop. Microbial biomass and abundance of mesofauna (microarthropods and enchytraeids) are important soil biological parameters in relation to soil function, plant productivity, and nutrient cycling; however, the effects of living mulch on these parameters are not fully understood. In this study we examined the effects of living mulch treatment with nitrogen fertilizer (0, 40, 160, or 200?kg?ha?1) on the abundance of soil microarthropods (Oribatida, Mesostigmata, Prostigmata, and Collembola) and the effects of living mulch treatment on the dynamics of the soil biota (mesofauna, microarthropods, enchytraeids, and microbial biomass nitrogen) from spring to autumn. Our results showed that living mulch treatment significantly (p?mesofauna and microbial biomass nitrogen, despite pesticide usage. Nitrogen levels did not affect the number of microarthropods. The litter layer in living mulch significantly (p?mesofaunal abundance and microbial biomass nitrogen and that the production of a litter layer by living mulch is one of the major mechanisms for this enhancement.  相似文献   
5.
The effect of soil microarthropods and enchytraeids on the decomposition of wheat straw in buried litterbags was studied by selective admission and exclusion. Litterbags with 20 m mesh size admitted nematodes, but excluded microarthropods, although temporarily. After 27 weeks of incubation part of these litterbags were colonized, probably through egg-deposition of mainly fungivorous Collembola and mites. When litterbags with a complete microarthropod community (1.5 mm mesh size) were compared to litterbags with strongly reduced microarthropod numbers (20 m mesh size), no differences between decomposition rates were found. However, in colonized 20-m mesh bags, we found reduced decomposition rates compared to the coarse mesh litterbags, probably due to overgrazing of the fungal population by large numbers of fungivorous microarthropods. These large numbers might be caused by the absence of predators. Extraction of microarthropods as well as enchytraeids and nematodes from the coarse mesh litterbags showed a distinct succession during decomposition. The decomposition process was dominated in the first phase by bacterivorous nematodes, nematophagous and bacterivorous mites, and in the later phase by fungivorous nematodes, fungivorous and omnivorous mites and Collembola, and predatory mites. This succession is indicative of a sequence from bacterial to fungal dominated decomposition of the buried organic matter. The results indicate that the decomposition rate is predator controlled.  相似文献   
6.
Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Clingmans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.  相似文献   
7.
Climate change has serious impacts on ecosystems, e.g. species diversity and abundance. It is well known that changes in temperature may have a pronounced influence on the reproductive output, growth and survival of various terrestrial species. However, much less is known on to how changes in temperature combined with exposure to pollution will influence biodiversity, the interaction between species, and the resulting change in species composition. In order to understand the effects of changes in temperature and copper pollution (individually and in combination) on soil communities and processes, a factorial multispecies experiment was performed. Six animal species (representing different functional groups) were exposed in control (30 mg Cu/kg) and copper-contaminated soil (1000 mg Cu/kg) to four temperatures (10, 14, 19, and 23 °C) representing the “summer” range (low to high) for Denmark, and three exposure periods (28, 61, and 84 days). The species composition, feeding activity and OM turnover were assessed throughout. Multivariate analysis displayed significant changes in the food-web both with different copper levels and temperatures, resulting in different species composition for each exposure scenario. The most important species were Enchytraeus crypticus (most sensitive to copper and temperature) and Folsomia candida (most abundant). Major changes in abundance due to temperature occurred in the first 28 days of exposure, where population growth was higher. A temperature dependent population growth rate could be modeled for an exposure period of 28 days, whereas after 61 and 84 days of exposure the data did not fit the model. Especially for treatments that also included Cu, modeling of the population growth was no longer possible. The results of our study indicate that when climate change occurs in polluted areas, the consequences on populations cannot be predicted based on data from non-polluted areas. The risk may be synergistic for certain species, as indicated in the present study, and the final balance may depend on the particular species composition of that ecosystem.  相似文献   
8.
为了解城市不同绿地系统土壤动物群落结构特征,2015年9月采用野外调查和室内试验相结合的方法,对中温带地区绥化市北林区4种不同绿地系统中型土壤动物群落结构进行调查,共获得土壤动物2 164头,共26类,隶属于2门4纲11目;土壤动物总个体数在学校绿地系统中最多(676头)、公园绿地中最少(422头),类群数表现为公园绿地中最多(21类)、居住区绿地中最少(13类);方差分析结果表明,个体数量在不同绿地系统间无显著差异(F=0.953,P=0.446),类群数在不同绿地系统间差异显著(F=5.192,P=0.016);多样性分析结果表明,不同绿地系统之间群落特征指数差异不明显;相似性分析结果表明,不同绿地系统间以中等相似为主,同一绿地系统内不同样地的相似性指数偏高;对个体数和类群数分层分析结果表明,各样地中型土壤动物均具有明显的表聚性特征。  相似文献   
9.
Summary In the 25-year-old vineyard of a farm near the Maremma National Park (Central Italy), replicate plots were established with a mulch of Trifolium subterraneum L. or cultivation and two levels of fertilizer. The mai objective of this research was to analyse responses by soil invertebrates and nutrients after introducing a herbaceous component into the system; the yield was also considered. The greater availability of organic substrate and the reduced cultivation as a result of green mulching increased the soil mesofauna biomass, especially detritivores. With time, a significant difference became evident between the populations of invertebrates present in the mulched plots and those in the cultivated plots. Over 2 years, most nutrients (Ca, K, P, and N) were significantly increased in the mulched plots compared to the cultivated plots. Grape yields were consistently higher in the bare plots. No significant differences were found in fertilizer effects.  相似文献   
10.
Summary

This paper reports the changes in soil chemical and physical properties, and in the populations and diversity of the soil macrofauna and mesofauna that occurred during the 10 years (1976-1986) following the initiation of nature farming practices on this once chemically-managed field in Northern Japan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号