首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2710篇
  免费   123篇
  国内免费   190篇
林业   365篇
农学   150篇
基础科学   145篇
  840篇
综合类   862篇
农作物   98篇
水产渔业   30篇
畜牧兽医   177篇
园艺   127篇
植物保护   229篇
  2024年   16篇
  2023年   77篇
  2022年   97篇
  2021年   80篇
  2020年   93篇
  2019年   101篇
  2018年   78篇
  2017年   122篇
  2016年   126篇
  2015年   106篇
  2014年   124篇
  2013年   170篇
  2012年   221篇
  2011年   192篇
  2010年   150篇
  2009年   181篇
  2008年   153篇
  2007年   167篇
  2006年   152篇
  2005年   89篇
  2004年   80篇
  2003年   77篇
  2002年   53篇
  2001年   45篇
  2000年   37篇
  1999年   36篇
  1998年   21篇
  1997年   28篇
  1996年   28篇
  1995年   13篇
  1994年   25篇
  1993年   17篇
  1992年   16篇
  1991年   12篇
  1990年   15篇
  1989年   11篇
  1988年   10篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有3023条查询结果,搜索用时 171 毫秒
1.
利用我国高原地区1963-2002年的逐月积雪日数资料,以及1972-2011年的格点积雪月频率资料,分析、对比了两种资料在该地区的时空演变特征。结果表明:同时段的(1972-2002)站点资料与格点资料相比,空间分布其高值区与积雪日数增值区均偏西北,偏北程度大致为3~4°,偏西程度大致为2~3°,且中心更为明显。在青藏高原西侧(85°E以西),积雪日数呈整体下降趋势。两种资料的积雪日数EOF分析存在一定的偏差,这与其对应的空间分布差异及气候趋势空间分布存在的偏差相吻合。  相似文献   
2.
本文描述了落叶松人工林抚育后径级结构特征。试验表明,抚育后的林分在一定密度条件下,其密度遵从Weibull分布,并能保持相当长的时间不变;其密度较大,Weibull参数值在2~3间变动,b值在6~8间变动;稀疏时不能用Weibull分布模拟。  相似文献   
3.
由专家群体对不同品种、种植密度、树龄、产量进行柑橘园产量等级经验评估,应用回归方法筛选出柑橘园产量等级的统一量化模式,为相关应用研究提供可比参考指标.  相似文献   
4.
利用36块落叶松一样树混交林标准地调查资料,研究其幼龄期林分Ⅰ级木单位面积株数与林分密度之间的关系,结果表明:Ⅰ级木的株数并非随密度的增加而直线递增,而是趋向“二阶常数”分布,且在同一年龄阶段,在较低的密度范围(2325~4800株/hm2)或较高的密度范围(4801~6750株/hm2).Ⅰ级木的株数变动幅度不太大。  相似文献   
5.
对福建省新育成甘薯品种应用灰色加权关联度分析法进行综合评估,旨在鉴定新品种在丘陵旱地的适应性以及探讨出一种比较适宜的品种评估方法。结果表明,龙薯1号、莆薯41和泉薯647比较适应东南沿海丘陵旱地生产条件,评估结果与品种的实际表现比较一致。  相似文献   
6.
刘新卫 《湖北农学院学报》2003,23(4):251-253,257
建立了湖北省分地区水灾损失灾度等级的划分标准。基于模糊模式识别理论,按最大隶属原则和择近原则对灾度等级进行了模糊综合评判。  相似文献   
7.
松嫩平原羊草草地水淹干扰恢复过程的群落动态   总被引:16,自引:6,他引:10  
根据随机取样的测定数据,经过幂函数和多元回归分析及相关检验,揭示了草地水淹干扰对羊草 寸草苔、羊草 杂类草群范数量性状的变化规律。水淹干扰对草地植被的物种组成及其比例有明显的影响。水淹后基本恢复到正常草地的种类数量和生产量配置大约需要6—7年。随着生境水分减少和土壤变干,羊草种群的数量和生物量均以幂函数形式增加,而寸草苔和杂类草的数量和生物量则呈先增后降的变化过程。  相似文献   
8.
Land cover data for landscape ecological studies are frequently obtained by field survey. In the United Kingdom, temporally separated field surveys have been used to identify the locations and magnitudes of recent changes in land cover. However, such map data contain errors which may seriously hinder the identification of land cover change and the extent and locations of rare landscape features. This paper investigates the extent of the differences between two sets of maps derived from field surveys within the Northumberland National Park in 1991 and 1992. The method used in each survey was the Phase 1 approach of the Nature Conservancy Council of Great Britain. Differences between maps were greatest for the land cover types with the smallest areas. Overall spatial correspondence between maps was found to be only 44.4%. A maximum of 14.4% of the total area surveyed was found to have undergone genuine land cover change. The remaining discrepancies, equivalent to 41.2% of the total survey area, were attributed primarily to differences of land cover interpretation between surveyors (classification error). Differences in boundary locations (positional error) were also noted, but were found to be a relatively minor source of error. The implications for the detection of land cover change and habitat mapping are discussed.  相似文献   
9.
A leakiness index for assessing landscape function using remote sensing   总被引:2,自引:0,他引:2  
The cover, number, size, shape, spatial arrangement and orientation of vegetation patches are attributes that have been used to indicate how well landscapes function to retain, not ‘leak’, vital system resources such as rainwater and soil. We derived and tested a directional leakiness index (DLI) for this resource retention function. We used simulated landscape maps where resource flows over map surfaces were directional and where landscape patch attributes were known. Although DLI was most strongly related to patch cover, it also logically related to patch number, size, shape, arrangement and orientation. If the direction of resource flow is multi-directional, a variant of DLI, the multi-directional leakiness index (MDLI) can be used. The utility of DLI and MDLI was demonstrated by applying these indices to three Australian savanna landscapes differing in their remotely sensed vegetation patch attributes. These leakiness indices clearly positioned these three landscapes along a function-dysfunction continuum, where dysfunctional landscapes are leaky (poorly retain resources). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
Testing of soil samples in greenhouse assays for suppressiveness to soilborne plant pathogens requires a considerable investment in time and effort as well as large numbers of soil samples. To make it possible to process large numbers of samples efficiently, we compared an in vitro growth assay with a damping-off assay using Pythium aphanidermatum as the test organism on tomato seedlings. The in vitro test compares the radial growth or relative growth of the fungus in soil to that in autoclaved soil and reflects suppressiveness of soils to the pathogen. We used soils from a field experiment that had been farmed either organically or conventionally and into which a cover crop (oats and vetch in mixture) had been incorporated 0, 10, 21, and 35 days previously. We obtained a significant, positive correlation between damping-off severities of tomato seedlings in damping-off assays and both relative and radial growth in vitro. In addition, radial and relative growth of P. aphanidermatum in the in vitro assay were positively correlated with several carbon and nitrogen variables measured for soil and incorporated debris. We did not find differences between the two farming systems for either growth measures of P. aphanidermatum or disease severities on tomato at different stages of cover crop decomposition. The in vitro assay shows potential for use with any fungus that exhibits rapid saprophytic growth, and is most suitable for routine application in suppressiveness testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号