首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   41篇
  国内免费   33篇
林业   33篇
农学   30篇
基础科学   13篇
  557篇
综合类   171篇
农作物   50篇
水产渔业   32篇
畜牧兽医   22篇
园艺   11篇
植物保护   16篇
  2024年   5篇
  2023年   16篇
  2022年   26篇
  2021年   18篇
  2020年   29篇
  2019年   30篇
  2018年   18篇
  2017年   26篇
  2016年   23篇
  2015年   39篇
  2014年   40篇
  2013年   63篇
  2012年   85篇
  2011年   76篇
  2010年   54篇
  2009年   57篇
  2008年   44篇
  2007年   49篇
  2006年   56篇
  2005年   36篇
  2004年   18篇
  2003年   17篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   11篇
  1998年   9篇
  1997年   4篇
  1996年   8篇
  1995年   9篇
  1994年   2篇
  1993年   7篇
  1992年   9篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
排序方式: 共有935条查询结果,搜索用时 15 毫秒
1.
分别于平水期和枯水期采集了花溪河流域典型农业区地表水和地下水样品。利用氢氧同位素示踪技术,结合土地利用类型对研究区不同水体的补给来源、季节变化及主要影响过程进行了分析,并对不同水体氢氧同位素值进行了空间插值分析,同时对其形成机制进行了分析,阐明了不同土地利用类型影响下的主要水文过程。结果表明:(1)研究区不同水体的主要补给来源为当地大气降水,月亮湖水库受蒸发作用影响明显,地表水和地下水的δD和δ~(18)O整体上呈现平水期高于枯水期的特征。(2)地下水的δD和δ~(18)O在枯水期与平水期均呈现明显的空间分异性特征,西部水田/水库集中区富集,东部旱地集中区贫化,土地利用对研究区环境水文过程影响明显。该研究结果有助于了解不同土地利用方式下地表水对地下水的影响,为流域管理提供科学依据。  相似文献   
2.
Plants have developed different mechanisms to absorb and solubilize phosphorus (P) in the soil, especially in environments with low P availability. This study evaluated the effects of different winter cover crops on soil P availability in a clayey subtropical (Hapludox) soil receiving soluble P fertilizer and a rock phosphate applied to the summer crop, under no‐tillage. The experiment was carried out over 3 yrs (2009–2011) with five different cover crop species: common vetch, fodder radish, ryegrass, black oat, white clover and fallow as control. The soil was sampled after the third year of cover crop cultivation and analysed for inorganic and organic P forms according to the well‐established Hedley fractionation procedure. Phosphate fertilizers promoted accumulation of both labile and nonlabile P pools in soil in the near surface layer, especially under rock phosphate. Fertilizer applications were not able to change P fractions in deeper layers, emphasizing that the Brazilian clayey soils are a sink of P from fertilizer and its mobility is almost nil. Although the cover crops recycled a great amount of P in tissue, in a short‐term evaluation (3 yrs) they only changed the content of moderately labile P in soil, indicating that long‐term studies are needed for more conclusive results.  相似文献   
3.
The effects of long-term fertilization of acidic soils on ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and its ecological implications remain poorly understood. We chose an acidic upland soil site under long-term (27-year) fertilization to investigate ammonia oxidizer communities under four different regimes: mineral N fertilizer (N), mineral NPK fertilizer (NPK), organic manure (OM) and an unfertilized control (CK). Soil net nitrification rates were significantly higher in OM soils than in CK, N or NPK soils. Quantitative analysis of the distribution of amoA genes by DNA-based stable isotope probing revealed that AOA dominate in CK, N and NPK soils, while AOB dominate in OM soils. Denaturing gradient gel electrophoresis and clone library analyses of amoA genes revealed that Group 1.1a-associated AOA (also referred to as Nitrosotalea) were the most dominant active AOA population (>92%), while Nitrosospira Cluster 3 and Cluster 9 were predominant among active AOB communities. The functional diversity of active ammonia oxidizers in acidic soils is affected by long-term fertilization practices, and the responses of active ammonia oxidizers to mineral fertilizer and organic manure are clearly different. Our results provide strong evidence that AOA are more highly adapted to growth at low pH and low substrate availability than AOB, and they suggest that the niche differentiation and metabolic diversity of ammonia oxidizers in acidic soils are more complex than previously thought.  相似文献   
4.
Dissolved organic matter (DOM) in soil solution represents a complex mixture of organic molecules and plays a central role in carbon and nitrogen cycling in plant–microbial–soil systems. We tested whether excitation–emission matrix (EEM) fluorescence spectroscopy can be used to characterize DOM and support previous findings that the majority of DOM is of high molecular weight (MW). EEM fluorescence spectroscopy was used in conjunction with MW fractionation to characterize DOM in soil solution from a grassland soil land management gradient in North Wales, UK. Data analysis suggested that three distinct fluorescence components could be separated and identified from the EEM data. These components were identified as being of humic‐like or fulvic‐like origin. Contrary to expectations, the majority of the fluorescence signal occurred in the small MW (<1 kDa) fraction, although differences between soils from the differently managed grasslands were more apparent in larger MW fractions. We conclude that following further characterization of the chemical composition of the fluorophores, EEM has potential as a sensitive technique for characterizing the small MW phenolic fraction of DOM in soils.  相似文献   
5.
Phosphorus (P) cycles rapidly in lowland tropical forest soils, but the process have been proven difficult to quantify. Recently it was demonstrated that valuable data on soil P transformations can be derived from the natural abundance of stable oxygen isotopes in phosphate (δ18OP). Here, we measured the δ18OP of soils that had received long-term nutrient additions (P, nitrogen, and potassium) or litter manipulations in lowland tropical forest in Panama and performed controlled incubations of fresh soils amended with a single pulse of P. To detect whether δ18OP values measured in the incubations apply also for soils in the field, we examined the δ18OP values after rewetting dry soils. In the incubations, resin-P δ18OP values converged to ∼3.5‰ above the expected isotopic equilibrium with soil water. This contrasts with extra-tropical soils in which the δ18OP of resin-P matches the expected equilibrium with soil water. Identical above-equilibrium resin-P δ18OP values were also found in field soils that did not receive P additions or extra litter. We suggest that the 3.5‰ above-equilibrium δ18OP values reflect a steady state between microbial uptake of phosphate (which enriches the remaining phosphate with the heavier isotopologues) and the release of isotopically equilibrated cell internal phosphate back to the soil. We also found that soil nutrient status affected the microbial turnover rate because in soils that had received chronic P addition, the original δ18OP signature of the fertilizer was preserved for at least eight weeks, indicating that the off-equilibrium δ18OP values produced during microbial phosphate turnover was not imprinted in these soils. Overall, our results demonstrate that ongoing microbial turnover of phosphate mediates its biological availability in lowland tropical soils.  相似文献   
6.
P deficiency is a major obstacle for crop production in subtropical red soils in South China, and the hydrolysis of organic P (Po) is of great significance in these soils due to the immobilization of P by Fe and Al. Cover cropping in orchards and symbiotic microbial inoculation are considered to improve soil quality, including P status, however, their effects on the hydrolysis of Po is little known. In this study, five soil managements were established in a guava orchard in South China for two and a half years, including clean culture (CC), cover cropping with Paspalum natatu (PN), PN with arbuscular mycorrhizal fungal inoculation (PNA), cover cropping with Stylosanthes guianensis (SG), SG with rhizobial inoculation (SGR). Soil chemical, biochemical and microbial properties were analyzed. Results indicate that soil pH and SOM content tended to increase following cover cropping alone or with microbial inoculation. Po content was significantly elevated in PNA. Po fractionation revealed that cover cropping alone or with microbial inoculation significantly affected the contents of moderately labile Po (MLPo) and moderately resistant Po (FAPo). Enzyme assay indicated that cover cropping with microbial inoculation increased the activities of acidic phosphomonoesterase (ACP), neutral phosphomonoesterase (NP) and alkaline phosphomonoesterase (ALP), with ALP the most sensitive, although ACP activity dominated in red soils. Correlation analysis suggested a significantly positive relationship between ALP activity and MLPo or FAPo. PCR-DGGE profile of the alp-harboring bacterial community showed that cover cropping with S. guianensis and mycorrhizal inoculation to P. natatu promoted the bacterial diversity and/or species richness. For almost all the measured parameters, PN and SG were comparable, however, PNA was superior to SGR, indicating the stronger additive effect of arbuscular mycorrhizal fungus than that of rhizobia. Cat-PCA indicated that MLPo was the most influential factor on phosphomonoesterase. In general, this study suggests that, in subtropical orchards with red soil, cover cropping with microbial inoculation can improve the Po hydrolysis via the promoted alp-harboring bacterial community and then ALP activity. Our results also suggest that the combination of P. natatu and arbuscular mycorrhizal fungus is better than S. guianensis and rhizobia, which possesses practical significance for sustainable production in these orchards.  相似文献   
7.
Natural variations in the stable isotope 15N are often exploited in studies of N cycling in ecosystems. Lower 15N natural abundance in non-legume plants growing in association with legumes, compared with the non-legume grown alone in pure stands have been observed in cropping, forage, and agroforestry systems. Such observations have frequently been attributed to the transfer of biologically-fixed nitrogen (N) from the legume to the companion non-legume, and various methodologies have been employed to calculate the extent of the N transfer. While some of these 15N natural abundance-based estimates of N transfer were within the range previously reported using equivalent 15N-enriched techniques (<20% of non-legume plant N and <10 kg N ha−1 derived from fixed N contributed by neighbouring legumes), many of the values obtained using natural abundance were much higher (30%–83% of the non-legume N derived from fixed N representing up to 30–40 kg N ha−1) than generally measured by 15N-enriched methods; with even greater estimates being determined where data were available to allow N transfer to be re-calculated on the basis of total legume N rather than fixed N (42% to >100%, and up to 110 kg N ha−1 per year). This review raises concerns about the assumptions behind the natural abundance approach, and provides some alternative interpretations for the observed differences in natural 15N abundance between plants grown in the presence and absence of legumes. It was concluded that simple comparative measures of non-legume δ15N alone cannot provide a quantitative estimate of N transfer between plant species if the dominant source and the isotopic identity of the transferred N cannot be validated, and if the extent of any isotopic fractionation associated with relevant N transformations occurring during transfer cannot be defined. To date this information is not forthcoming. There is a need to greatly improve our understanding of the transfer processes before the real value of the δ15N technology can be realized. In the first instance this will primarily be achieved by carefully executed experiments under controlled conditions, and in the field, employing both 15N natural abundance and enrichment approaches so estimates of transfer can be compared, and the data interrogated using modelling approaches to explore isotopic fractionation.  相似文献   
8.
Abstract

Sequential extraction techniques have been used to make inferences about speciation of phosphorus (P) and to a lesser extent arsenic (As) in soils. However, sequential extraction studies on the less‐abundant group V element, antimony (Sb), are limited. In this work, a widely used P sequential extraction scheme was modified and used to extract P, As, and Sb from two acidic soils from the Macleay River floodplain, NSW, that were enriched with Sb (26.9 and 23.0 mg kg?1). An ammonium oxalate–oxalic acid step was included in the extraction sequence to dissolve the noncrystalline iron (Fe) and aluminium (Al) hydroxide phase. It extracted 30 to 47% of Sb, indicating the importance of this fraction, which may be mobilized in the floodplain by acid sulfate soil processes and periodic waterlogging. The original method overestimated P, As, and Sb in the residual fraction (30–71%). Relative efficiency values of extracts for P, As, and Sb were compared, and inferences about phase distributions were made. The results suggest some potential in using extractions to assess bioavailability of Sb in soil.  相似文献   
9.
利用稳定同位素技术研究了稻田沟渠、池塘、湿地等水体的碳、氮稳定同位素组成特征与时空变化。结果表明,水中颗粒性有机物(Particulate organic matter,POM)δ13C值(稳定性碳同位素比值)在-31.5‰~-24.3‰之间变化,平均值为-27.7‰,可能主要来自于浮游植物和浮游动物的贡献。POM稳定性碳同位素比值存在明显的季节变化,呈现出春、夏季高于秋、冬季的趋势。浮游动物与POM稳定性碳同位素比值之间的时空变化存在一定的相关性,说明研究区内浮游动物对内源有机碳的利用可能主要来自POM。颗粒性有机物δ15N存在秋、冬季高于春、夏季的趋势,但空间差异不显著,其中湿地的变化幅度相对较大(3.2‰~6.3‰),δ15NPOM平均值为4.1‰,说明研究区固氮作用较小,外源物的污染程度较低。  相似文献   
10.
赵甜甜  田康  胡文友  黄标  赵永存 《土壤学报》2022,59(5):1204-1214
磷是土壤生态系统中的重要组成元素,开展土壤磷循环研究对提高磷肥利用效率和降低磷的生态环境风险具有重要意义。磷酸盐氧同位素技术已经被证明是一种示踪环境中磷生物地球化学行为的有效方法。本文系统综述了磷酸盐氧同位素技术的研究进展和未来发展方向。详细介绍了磷酸盐氧同位素的技术原理、样品处理和测定方法;阐述了无机磷和有机磷的氧同位素特征及时空分布特征;从评估土壤磷微生物利用状况和示踪土壤磷循环两个方面探讨了磷酸盐氧同位素技术在土壤磷循环研究中的应用前景,分析了磷来源、环境条件、生物活动和样品前处理过程对土壤磷酸盐氧同位素特征的影响,最后展望了该技术未来的研究方向。以期为磷酸盐氧同位素技术在土壤学和环境科学领域的发展和应用提供新的视角和科学指导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号