首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
农学   1篇
基础科学   2篇
  6篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
The effects of irrigation-induced salinity and sodicity on the size and activity of the soil microbial biomass in vertic soils on a Zimbabwean sugar estate were investigated. Furrow-irrigated fields were selected which had a gradient of salinity and sugarcane yield ranging from good cane growth at the upper ends to dead and dying cane at the lower ends. Soils were sampled under dead and dying cane, poor, satisfactory and good cane growth and from adjacent undisturbed sites under native vegetation. Electrical conductivity (EC) and sodium adsorption ratio (SAR) of saturation paste extracts was measured, as well as the exchangeable sodium percentage (ESP). There was a significant negative exponential relationship between EC and microbial biomass C, the percentage of organic C present as microbial biomass C, indices of microbial activity (arginine ammonification and fluorescein diacetate hydrolysis rates) and the activities of the exocellular enzymes β-glucosidase, alkaline phosphatase and arylsulphatase but the negative relationships with SAR and ESP were best described by linear functions. By contrast, the metabolic quotient increased with increasing salinity and sodicity, exponentially with EC and linearly with SAR and ESP.Potentially mineralizable N, measured by aerobic incubation, was also negatively correlated with EC, SAR and ESP. These results indicate that increasing salinity and sodicity resulted in a progressively smaller, more stressed microbial community which was less metabolically efficient. The exponential relationships with EC demonstrate the highly detrimental effect that small increases in salinity had on the microbial community. It is concluded that agriculture-induced salinity and sodicity not only influences the chemical and physical characteristics of soils but also greatly affects soil microbial and biochemical properties.  相似文献   
2.
Joint pedological, geochemical, hydrological and geophysical investigations were performed to study the coexistence of saline and freshwater lakes in close proximity and similar climatic conditions in the Nhecolândia region, Pantanal wetlands in Brazil. The saline lakes are concentrically surrounded by green sandy loam horizons, which cause differential hydrological regimes.Mg-calcite, K-silicates, and amorphous silica precipitate in the soil cover, whereas Mg-silicates and more soluble Na-carbonates are concentrated in the topsoil along the shore of the saline lake. In saline solutions, some minor elements (As, Se) reach values above the water quality recommendations, whereas others are controlled and incorporated in solid phases (Ba, Sr). Locally, the destruction of the sandy loam horizons generates very acidic soil solution (pH ~ 3.5) through a process not yet understood. The soil distributions indicate that some freshwater lakes are former saline lakes. They are invaded by freshwater after destruction of the sandy loam green horizons, then the freshwater becomes enriched in K+, SO42, Fe, Al, and a stream of minor and trace elements. The formation of these green sandy loam horizons in the saline environment and their destruction in the non-saline one emphasizes the dynamic nature of this environment.  相似文献   
3.
Soil sodicity development is a process that depends nonlinearly on both salt concentration and composition of soil water. In particular in hot climates, soil water composition is subject to temporal variation due to dry–wet cycles. To investigate the effect of such cycles on soil salinity and sodicity, a simple root zone model is developed that accounts for annual salt accumulation and leaching periods. Cation exchange is simplified to considering only Ca/Na exchange, using the Gapon exchange equation. The resulting salt and Ca/Na-balances are solved for a series of dry/wet cycles with a standard numerical approach. Due to the nonlinearities in the Gapon equation, the fluctuations of soil salinity that may be induced, e.g. by fluctuating soil water content, affect sodicity development. Even for the case that salinity is in a periodic steady state, where salt concentrations do not increase on the long term, sodicity may still grow as a function of time from year to year. For the longer term, sodicity, as quantified by Exchangeable Sodium Percentage (ESP), approaches a maximum value that depends on drought and inflowing water quality, but not on soil cation exchange capacity. Analytical approaches for the salinity and sodicity developing under such fluctuating regimes appear to be in good agreement with numerical approximations and are very useful for checking numerical results and anticipating changes in practical situations.  相似文献   
4.
聚丙烯酰胺施用对碱土和非碱土水力传导度的影响   总被引:8,自引:0,他引:8  
彭冲  李法虎  潘兴瑶 《土壤学报》2006,43(5):835-842
聚丙烯酰胺(PAM)可增加土壤结构的稳定性,但它对土壤水力传导能力的影响尚不清楚。通过室内土柱淋洗试验,研究了PAM施用量和施用方式对不同碱度土壤饱和水力传导度的影响。PAM施用量为0、1/5000、1/2000和1/1000(PAM与于土重之比),施用方式为混合施用和表面覆盖施用,土壤为碱土和非碱土两种。试验结果显示,在未施用PAM的条件下,非碱土水力传导度大于碱土。PAM混合施用显著地减小了土壤的稳定水力传导度,但它对碱土的影响程度大于对非碱土的影响。PAM覆盖施用降低了非碱土的稳定水力传导度;但碱土的稳定水力传导度随PAM施用量的增加先减小后增大。为了维持良好的土壤水力传导性能,应尽可能地减小PAM的施用量,或在非碱土地上采用混合施用而在碱土地上采用地表覆盖的施用方式。  相似文献   
5.
A pot experiment was conducted to see the effect of varying levels of soil sodicity on leaf growth, nitrate reductase activity, nodule development and nitrogenase activity in two lentil ( Lens esculenta Moench) genotypes. It was observed that in both the genotypes increasing level of soil sodicity decreased the plant height, leaf area, leaf dry weight, total biomass production and finally the grain yield. Nitrate reductase activity in leaf tissues and concentration of total nitrogen in different plant organs showed significant reduction with increase in soil sodicity. Increasing soil sodicity (15 and 20 ESP) was not only deleterious to nodulation and nitrogenase activity but also caused complete failure of nodulation process at 25 ESP of soil. Reduction in aforesaid characters due to increasing soil sodicity was less in variety PL-406 than that of local indicating thereby the relative tolerance of PL-406 to sodicity.
Prolonged and higher activities of nitrate reductase and nitrogenase at higher sodicity level in PL-406 might be the reasons for superiority of this variety. Significant and positive correlations were also observed between leaf characters and nitrogenase activity.  相似文献   
6.
Abstract

Interrelations between soil pH and exchangeable sodium percentage (ESP) were examined using soils from the Burdekin River area in tropical Queensland. Highly significant correlations were found but the goodness of fit differed between groups of soil profile classes. In general, Typic Natrustalfs of the flood plains had better relationships (r2 = 0.85) between these soil properties than did the Chromusterts (r2 = 0.50). The regression ESP = 1.935 × 10‐5 pH6.205 (r2 = 0.61; n= 288) for all soils and depths underestimated ESP in Typic Natrustalfs groupings and overestimated this soil property in the Chromusterts.

By using the appropriate regression, pH levels associated with non‐sodic, sodic and strongly sodic horizons have been defined. Either laboratory or field determined estimates of pH may be used but the laboratory determined value is preferred. It is expected the predictive models will remain valid until soil ESP or pH levels are significantly modified as a consequence of agricultural development.  相似文献   
7.
8.
Water quality is one of the potential concerns associated with the development of coalbed natural gas (CBNG) in the Powder River Basin (PRB) of Wyoming and Montana. Large quantities of water (hereafter referred to as CBNG water) are being co-produced and often discharged in the process of exploring natural gas from coal seams. Use of CBNG water for irrigating croplands may be beneficial if factors associated with soil salinity and sodicity are controlled. This study evaluated effects of five water and three soil treatments applied to a mixed-hay cropland on selected soil chemical properties using a split plot design. Water treatments consisted of Piney Creek water (PC or control), direct irrigation with CBNG water (electrical conductivity or EC of 1.38 dS m−1 and sodium adsorption ratio or SAR of 24.3 mmol1/2 L−1/2) with no amendments (NT), CBNG water mixed with solution grade gypsum (G), CBNG water acidified using sulfur burner and mixed with gypsum (GSB) and CBNG water mixed with Piney Creek water (PC/CBNG). Soil treatments consisted of gypsum (G), elemental sulfur (S), combination of these two (GS) and no treatment or the control (NT). Pre (Summer 2003) and post treatment (Fall 2004) soil samples were collected to a depth of 60 cm (top three horizons: A, Bt1 and Bt2) to evaluate the effects of treatments on soil pH, EC, SAR, and sulfate (SO42−) concentrations. Comparisons between pre and post irrigation soil chemistry data indicated CBNG water with no amendments significantly increased (P ≤ 0.05) Na+ concentration within the soil profile. Plots treated with a combination of the GSB water treatment and the GS soil amendments were most effective in maintaining the low SAR values at surface soil layer. In all treatment combinations, both EC and SAR increased significantly in the top two sampling depths (A and Bt1 horizons). Further studies are required to evaluate applications of leaching fractions at the end of each irrigation season for its effectiveness at moving Na+ below the rooting zone.  相似文献   
9.
A field experiment was carried out at the University of Agriculture, Faisalabad (Pakistan) during 1988–90 to evaluate the comparative efficiency of chemical and biological methods for the reclamation of a calcareous saline-sodic soil (pHs
  • 1 pHs = pH of saturated soil paste
  • = 8.2–8.6; ECe
  • 2 ECe = Electrical conductivity of the saturation extract
  • = 7.4–9.0 dS m−1; SAR
  • 3 SAR = Sodium adsorption ratio
  • = 55.6–73.0 for upper 30 cm layer). Five treatments were assessed, three involved cropping: sesbania (Sesbania aculeata), sordan (Sorghum bicolor x Sorghum sudanese), and kallar grass (Leptochola fusca) and two were non-cropped (control and gypsum at 100.0 per cent GR-15·0 cm) were employed. Water of low electrolyte concentration (EC = 0.27 dS m−1) was used for irrigation and leaching. Sesbania and kallar grass were found to be effective biotic materials for soil reclamation. These plant species produced substantial biomass and also improved the soil environment by lowering the EC and SAR of the soil. Sordan was relatively less-effective due to its sensitivity to high temperature and sodicity during germination and early seedling stages. After two cropping seasons, wheat (cultivar LU 26S) was sown as a test crop. Efficiency of treatments as indicated by wheat grain yield was in the order: sesbania = gypsum > kallar grass > sordan > control.  相似文献   
    1
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号