首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Plant-soil feedbacks are gaining attention for their ability to determine plant community development. Plant-soil feedback models and research assume that plant-soil interactions occur within days to weeks, yet, little is known about how quickly and to what extent plants change soil community composition. We grew a dominant native plant (Pseudoroegneria spicata) and a dominant non-native plant (Centaurea diffusa) separately in both native- and non-native-cultivated field soils to test if these species could overcome soil legacies and create new soil communities in the short-term. Soil community composition before and after plant growth was assessed in bulk and rhizosphere soils using phospholipid fatty acid analyses. Nematode abundance and mycorrhizal colonization were also measured following plant growth. Field-collected, native-cultivated soils showed greater bacterial, Gram (−), fungal, and arbuscular mycorrhizal PLFA abundance and greater PLFA diversity than field-collected, non-native-cultivated soils. Both plant species grew larger in native- than non-native-cultivated soils, but neither plant affected microbial composition in the bulk or rhizosphere soils after two months. Plants also failed to change nematode abundance or mycorrhizal colonization. Plants, therefore, appear able to create microbial legacies that affect subsequent plant growth, but contrary to common assumptions, the species in this study are likely to require years to create these legacies. Our results are consistent with other studies that demonstrate long-term legacies in soil microbial communities and suggest that the development of plant-soil feedbacks should be viewed in this longer-term context.  相似文献   
2.
Differences in soil microbial communities between ex-arable and undisturbed soils are often assumed to reflect long-term legacies of agricultural practices. Ex-arable soils, however, are commonly dominated by different plant species than undisturbed soils making it difficult to separate the importance of land-use and plant-growth legacies. In a system where non-native plants dominate ex-arable soils, we decoupled land-use (ex-arable, undisturbed) and plant-growth (native, non-native) effects on soil microbial communities using a factorial sampling design. Soils were removed from 14 sites that formed a 52-year chronosequence of agricultural abandonment. Microbial abundance and composition were measured using whole-soil phospholipid fatty acid analyses and microbial activity was measured in a subset of samples using sole-carbon-source utilization analyses. We found that both non-native-cultivated and ex-arable soils were independently associated with lower microbial abundance and diversity than native and undisturbed soils. We also found a correlation between microbial abundance and age-since-agricultural abandonment in ex-arable/non-native-cultivated soils suggesting that non-native plant effects accumulate over time. Microbial activity was consistent with microbial abundance; microbial communities in non-native-cultivated, ex-arable soils were slow to respire most carbon sources. Our data suggests that agricultural practices create soil conditions that favor non-native plant growth and non-native plants maintain these conditions. Potential mechanisms explaining how non-natives create soils with small microbial communities and how small microbial communities may benefit non-natives are discussed.  相似文献   
3.
Habitat-suitability modelling is being increasingly used as a tool for conservation biology. Although studies at large spatial scales are more appropriate for reserve design and management, there is a scarcity of published work on local, high-resolution applications of such models. In this work we develop high-resolution habitat models (1 ha) and study habitat preferences (focal points) of Dupont’s lark Chersophilus duponti, an endangered shrub-steppe passerine, in the partially overlapping Special Protected Area for birds (SPA) and Important Bird Area (IBA) of “páramos de Layna” (NW Spain), to assess both the adequacy of the reserve’s limits and the effect of land-use changes on the species’ population size. Both analytical approaches show that the Dupont’s lark favours flat areas characterized by small shrubs with bare ground, so that, for example, a conversion of dry crops to shrubs promoted by agri-environment schemes under CAP could increase the population size up to 80%. Although the IBA and SPA are similar in size - as compelled by EU environmental policy - the latter shows rugged topography typically avoided by the species. We further discuss the possible conflict between EU environmental and agricultural policies on the conservation of this species and suggest it can be addressed with our study approach.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号