首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  1988年   1篇
排序方式: 共有4条查询结果,搜索用时 750 毫秒
1
1.
Summary This study is concerned with the way alachlor, atrazine and metolachlor interfered with phosphatase activity in a clay loam soil unenriched and enriched with maize residues. Enrichment caused an increase in all phosphatase activities (acid and alkaline phosphomonoesterase, phosphodiesterase, phosphotriesterase) tested. Interference with phosphatase activity following herbicidal treatment was found in both unenriched and enriched soil samples. Statistically significant interference was dependent on soil enrichment, the type of herbicide and its rate of application and the time elapsed since the herbicidal treatment. The observed changes in phosphatase activities are attributed to herbicidal action on phosphatase-producing microorganisms. Among the herbicides tested, the acetanilide derivatives exerted a lesser inhibiting effect than atrazine. Nevertheless, all the altered phosphatase activities showed a tendency, more or less rapid, to reach the levels in the corresponding untreated soil samples.  相似文献   
2.
As part of a study of the processes involved in litter biodegradation, we considered the variations over 1 year of the phosphatase activities in sclerophyllous evergreen oak litter (Quercus ilex L.). Evergreen oak is representative of tree species in the forests of the French Mediterranean area. Acid (E.C. 3.1.3.2.) and alkaline (E.C. 3.1.3.1.) phosphatases, were measured over 13 months in the forest litter, along with several biotic and abiotic variables, potentially involved in the regulation of these enzymes. These comprised moisture, temperature, pH, water-extractable inorganic P (PI), fungi, culturable heterotrophic bacteria and protein concentrations. Moisture considerably affected the production of proteins and acid phosphatases, probably formed by litter microorganisms. This result corroborated the study of Criquet et al. [Soil Biology and Biochemistry 34 (2002) 1111] which indicated that rainfall was the most important factor regulating the production and the activity of numerous enzymes in sclerophyllous forest litter. However, it appeared that moisture cannot alone predict all of the variations in phosphatase activities and the mineralisation rate of organic P (PO). Indeed, principal component analyses (PCA) and multiple regressions showed that temperature and bacterial communities were also implicated in phosphatase dynamics and PO mineralisation. Acid phosphatases were negatively correlated with the temperature, whilst alkaline phosphatases were positively correlated with this variable. The significant correlation obtained between bacteria and PI concentrations, and the lack of correlation between bacteria and both acid and alkaline phosphomonoesterases, suggest that other important phosphatase types, such as phosphodiesterases, must be strongly implicated in PO mineralisation of the litter and in the regulation of P microbial metabolism.  相似文献   
3.
The aim of this study was to investigate factors regulating phosphatase activities in Mediterranean soils subjected to sewage sludge applications. Soils originating from calcareous and siliceous mineral parent materials were amended with aerobically digested sewage sludge, with or without physico-chemical treatment by ferric chloride. Sludge amendments, ranging from 6.2 to 10 g kg−1 soil, were carried out in order to provide soil with a P total quantity equivalent to 0.5 g P2O5 per kg of soil. Bacterial density, phosphatase activities (i.e. acid and alkaline phosphomonoesterases and phosphodiesterases) and available P (i.e. P Olsen and P water) were measured after 25 and 87 days of incubation. Results showed significant effects of sewage sludge application and incubation period. Sewage sludge effect resulted in an increase in phosphatase activities, microbial density and available P. Incubation period increased available P while decreasing phosphatase activities. This study also revealed that the origin of sludge and its chemical characteristics may show different effects on certain variables such as phosphodiesterases or bacterial density, whereas mineral parent materials of soils did not show any significant effects.  相似文献   
4.
The aim of this study was to determine the effects of mineral and organic-P-fertilizers on soil P availability, bacteria densities and phosphatase activities, in a degraded Mediterranean soil characterized by low level in soil organic matter and nutrients. A typical degraded Mediterranean soil, originating from a siliceous mineral parent material, was amended with different organic or mineral P-sources: aerobically digested sewage sludge (SS), with or without physico-chemical treatment by ferric chloride; sewage sludge compost (SSC); Na or K mineral P-salts (Pi-salts). All the amendments were carried out in order to provide soil with a P total quantity equivalent to 0.5 g P2O5/kg of soil. Bacterial density, phosphatase activities (i.e. acid (APH) and alkaline (BPH) phosphomonoesterases and phosphodiesterases), BPH/APH ratio, and available P (P Olsen) were measured after 25 and 87 days of incubation. Results showed that all the P-sources used to fertilize soil during this study resulted in significant increase in P concentration. However, different responses in phosphatase activities and bacterial densities were obtained with regards to the amendment applied to soil. Indeed, it appeared clearly that sewage sludge (SS) considerably stimulated soil biological activity, and more especially the different kinds of phosphatases involved in P mineralization and P turn-over. On the contrary, sewage sludge compost (SSC) as well as P-salts amendments did not affected these parameters in most cases. Results showed also that the incubation time influenced almost all the biological and chemical parameters investigated during this study. As a consequence, P availability was considerably improved in the amended soils between the two sampling dates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号