首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2015年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 171 毫秒
1
1.
Hydrothermal carbonization (HTC) is a method to produce carbonized material at relatively low temperatures (180–250 °C) under pressure and aqueous conditions. The product is called hydrochar and can be used as a soil amendment. However, applied in high dosages it may have detrimental effects on plants or soil biota. The potential impact of hydrochar amendment on beneficial soil organisms such as arbuscular mycorrhizal fungi (AMF) and earthworms and their interactions are not well understood. The goal of the present study was to determine effects of hydrochar on plant growth and soil biota and to evaluate interactions of earthworms and hydrochar on plant and AMF performance and to identify underlying mechanisms. In a greenhouse experiment, we investigated the effect of hydrochar at different addition rates (control, 1% and 10%, v/v) with or without the earthworm Aporrectodea caliginosa on the growth of Plantago lanceolata L. and the performance of its AMF. We observed a positive interaction between earthworms and 10% hydrochar on shoot and root biomass: added as a single treatment hydrochar had a negative effect on plant growth at this dosage, but plant biomass increased significantly when hydrochar was added together with earthworms. Root colonization by AMF increased significantly with increasing concentration of hydrochar, but was not affected by earthworms. Contrastingly, extraradical hyphal length of AMF was reduced by earthworms, but not affected by hydrochar. Thus, hydrochar and earthworms affected the performance of AMF, albeit of different AMF structures and in different directions. Our results indicate that earthworms may play an important role in alleviating the negative impacts of high dosages of hydrochar on plant growth; such interactions should move into focus of future research on potential effects of HTC materials.  相似文献   
2.
The effects of biochar (maize biochar – MBC, wood biochar – WBC) and unfermented or fermented hydrochar (HTC) on the euedaphic Collembola Protaphorura fimata and on spring wheat were investigated in greenhouse experiments. The impact of char type, amount of fermented HTC, and MBC-Collembola interactions were assessed. Generally, shoot and root biomass as well as abundance of P. fimata were not affected by the different chars. However, with increasing amounts of fermented HTC the abundance of P. fimata declined, whereas shoot biomass of wheat increased. Moreover, MBC altered root morphology and resulted in thicker roots with higher volume. The latter was not apparent when Collembola were present.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号