首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
林业   28篇
  24篇
综合类   1篇
农作物   2篇
畜牧兽医   1篇
园艺   4篇
  2017年   1篇
  2015年   3篇
  2013年   1篇
  2011年   4篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   2篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  1999年   1篇
排序方式: 共有60条查询结果,搜索用时 62 毫秒
1.
通过温室控制试验,探讨生境变化对豚草生长的影响,以及与豚草入侵能力的关系;使用智能光照培养箱模拟不同海拔梯度的温度条件,探讨低温对豚草幼苗生长的影响;通过人工去叶的方式模拟天敌昆虫采食对豚草的生物控制效果。研究结果表明:豚草与丛枝菌根真菌共生增强了其适应不同土壤环境的能力。丛枝菌根真菌通过增加豚草的比叶面积,提高了豚草的资源获取能力,此作用在土壤有效氮含量低时更加明显,丛枝菌根真菌对豚草适应低氮生境有着重要意义。由于海拔升高导致环境温度降低,豚草幼苗的株高显著减少(P0.01),生物量在22.5~15.1℃差异显著(P0.01),15.1~9.4℃差异不显著,低温导致豚草幼苗生长缓慢,可能是限制豚草向北京周边高海拔地区扩散的重要环境因子之一。去叶处理对豚草的分枝数没有显著影响。去叶显著降低了豚草的生物量(P0.05),而在对照和碳素添加(1650 g·m-2)处理中对生物量没有显著影响。去叶后,剩余叶片的叶绿素测定值升高,豚草通过补偿生长增加了剩余叶片中的叶绿素含量以维持必需的光合作用。据此推测,由于豚草具有较强的再生能力,8月份之前如果天敌采食没有达到一定强度,则不会形成有效控制。  相似文献   
2.
Interactions between two canopy layers in a designed perennial herbaceous plant community were investigated over a period of four and a half years to see whether it was possible to create an urban landscape vegetation that was both flower rich for an extensive time period and resistant to weed colonization at very low levels of maintenance by sowing seed in situ. The ecologically novel plant community involved a tall over-canopy layer of 18 species of North American prairie and woodland edge forbs, and a shade tolerant under-canopy of eight European and North American, mainly woodland forbs. After 5 years the community was dominated by four over-canopy and two winter green under-canopy species. Interspecific competition generated by the sown biomass restricted weed colonization to very low levels, despite the experiment being surrounded by a weedy brownfield. The winter green canopies of the two dominant under-storey forbs closed down gaps within a winter deciduous, prairie-like vegetation, improving winter appearance and providing a major flowering display in spring. This vegetation is an attractive design model for more sustainable herbaceous planting in urban landscape space.  相似文献   
3.
We summarized the status of wolves (Canis lupus), elk (Cervis elaphus), and woody browse conditions during the 20th century for the upper Gallatin elk winter range in southwestern Montana, USA. During this period, wolves were present until about the mid-1920s, absent for seven decades, and then returned to the basin in 1996. A chronosequence of photographs, historical reports, and studies indicated willows (Salix spp.) along streams became heavily browsed and eventually suppressed following the removal of wolves, apparently due to unimpeded browsing by elk. However, after wolf establishment in 1996, browsing intensity on willows lessened in some areas and we hypothesized that, at both a landscape and fine scale, browsing pressure reflects terrain configurations influencing predation risk (nonlethal effects), in conjunction with lower elk densities (lethal effects). We measured browsing intensity and heights of Booth willow (S. boothii) along 3000 m reaches of the Gallatin River and a tributary to examine the potential influence of wolf/elk interactions upon willow growth. Where the Gallatin Valley is relatively narrow (high predation risk), willows began releasing in 1999 and by 2002 were relatively tall (150–250 cm). In contrast, willow heights along a wider portion of the Gallatin Valley, along the open landscape of the tributary, and an upland site (all low predation risk) generally remained low (<80 cm). We identified terrain and other features that may contribute to the perceived risk of wolf predation, by elk for a given site. Although alternative mechanisms are discussed, changes in willow communities over time following wolf removal and their subsequent reintroduction were consistent with a top-down trophic cascade model involving nonlethal and possibly lethal effects. If similar top-down effects upon vegetation hold true in other regions of North America and other parts of the world where wolves have been extirpated, wolf recovery may represent a management option for helping to restore riparian plant communities and conserve biodiversity.  相似文献   
4.
White-tailed deer (Ododcoileus virginiana) can substantially affect the structure and species composition of a forest. The tolerance of a forest community to browsing may vary by type as a result of varying biotic and abiotic factors of the environment. To date, no studies have compared the effects of browsing among forest communities within a physiographic region. We investigated the effects of browsing on vegetation structure and woody seedling composition in three forest types (oak–hickory, Virginia pine–eastern red cedar, bottomland hardwood) in Manassas National Battlefield Park (MNBP), Virginia, USA. We compared forb cover, vertical plant cover (0–1.5 m tall), and survival of tagged seedlings in 10 exclosed (2 m × 6 m) and 10 unexclosed plots in each forest type during a 5-year period. No differential effects of browsing were found among forest types. In all forest types, deer (67 deer/km2) suppressed forb and vertical plant cover to levels less than would be expected in the absence of deer. Seedling survival rates of most species were significantly reduced by browsing. By the 4th year of the study, box elder (Acer negundo), hickory (Carya spp.), and red maple (Acer rubrum) had been eliminated from unexclosed plots, and red and white oaks (Quercus spp.) dramatically reduced. Ash (Fraxinus spp.), black cherry (Prunus serotina), and hackberry (Celtis occidentalis), although significantly impacted, remained the most abundant species throughout the study. These findings suggest that white-tailed deer may be modifying the structure of the forest interior to the extent that it adversely affects wildlife species dependent on a dense understory to thrive. We predict that the future composition of forests in MNBP will shift towards stands with fewer species and a greater dominance of ash, black cherry, and hackberry, particularly in the oak–hickory and bottomland hardwood forests, where the majority of current dominants are most affected.  相似文献   
5.
To test a hypothesis that the effects of defoliation on plant ecophysiology and soil organisms depend on the timing of defoliation within a growing season, we established a greenhouse experiment using replicated grassland microcosms. Each microcosms was composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing in grassland soil with a diverse soil community. The experiment consisted of two treatment factors—defoliation and plant growth phase (PGP)—in a fully factorial design. Defoliation had two categories, i.e. no trimming or trimming a total of four times at 2 week intervals. The PGP treatment had four categories, i.e. 1, 3, 7 or 13 weeks growth following planting before the first defoliation (subsequently referred to as PGP1, PGP2, PGP3 and PGP4, respectively). In each PGP treatment category, microcosms were harvested 1 week after the final defoliation. Harvested shoot and root mass and total shoot production (including trimmed and harvested shoot mass) increased with time and were lower in defoliated than in non-defoliated systems. The fraction of root biomass of harvested plant biomass decreased with time but was increased by defoliation at PGP3 and PGP4. The proportion of T. repens in total shoot production increased and those of P. lanceolata and P. pratense decreased with time. Defoliation increased the proportions of P. lanceolata and P. pratense in total shoot production at PGP3 and PGP4. Root N and C concentrations increased and root C-to-N ratio decreased with time in non-defoliated systems. Defoliation increased root N concentration by 38 and 33% at PGP1 and PGP2, respectively, but decreased the concentration by 22% at PGP4. In contrast, defoliation reduced root C concentration on average by 1.5% at each PGP. As with the effects on root N concentration, defoliation decreased the root C-to-N ratio at PGP1 and PGP2 but increased the ratio at PGP4. Among soil animal trophic groups, the abundance of herbivorous nematodes was higher at PGP4 than at PGP1-3 and that of predacious nematodes higher at PGP2-4 than at PGP1, while the abundance of bacterivorous, fungivorous and omnivorous nematodes and that of detritivorous enchytraeids did not differ between the PGP categories. Among bacterivorous nematodes, however, Acrobeloides, Chiloplacus and Protorhabditis species decreased and that of Plectus spp. increased with time. Defoliation did not affect the abundance of soil animal trophic groups, but reduced the abundance of herbivorous Coslenchus spp. at each PGP and raised the abundance of herbivorous Rotylenchus spp. and bacterivorous Eucephalobus spp. at PGP4. Confirming our hypothesis, the results suggest that the effects of defoliation on the attributes of grassland plants, such as biomass allocation between roots and shoots and root quality, may depend on the timing of defoliation within a growing season. However, contradicting our hypothesis, the results suggest that significant changes in plant attributes after defoliation may not always lead to substantial changes in the abundance of belowground organisms.  相似文献   
6.
Population-level impacts of insect herbivory on rare and endangered plants are poorly understood, being frequently suggested but seldom quantified. We compiled 37 studies from the primary literature encompassing 35 rare plant species and at least 63 insect herbivore species, and assessed patterns in the effects of insect herbivores on rare plant populations and vital rates. Only three studies directly quantified effects of insect herbivory on population size or growth rate, with the vast majority instead extrapolating from vital rates to population size. Few studies (eight) studied herbivory experimentally, and feeding guilds other than seed predators have been relatively neglected. Estimates of population-level impacts vary extremely widely, but for many rare plants insect herbivores cause major reductions in survivorship or fecundity or can even drive local extinctions. Four studies documented positive (plant-) density dependence in insect attack, suggesting that herbivores may have a stabilizing influence on plant populations and thus may play a role in regulating rare plant population size. Most reported herbivores of rare plants are oligophagous or polyphagous, but monophagous herbivores of rare plants do exist, and there was no detectable difference in impact among specialization classes. Attack on rare plants by escaped biocontrol agents can sometimes have significant population-level effects, but such cases appear uncommon. Because insect herbivory can strongly suppress rare plant populations or vital rates, we need to know much more about what ecological and evolutionary factors determine the population-level impacts of insect herbivores. We suggest several ways in which the results of such research could inform conservation practices for rare plant species – for example, the possibility of different management regimes for plants under attack by monophagous, oligophagous, and polyphagous herbivores.  相似文献   
7.
We investigated whether long-term moderate livestock grazing by sheep (ca. 10 animal unit days/ha) in a semiarid shrubland with a long-term average annual rainfall of 200 mm causes changes in soil surface structure and dimensions of shrub and intershrub patches. We examined grazing-induced changes in landscape patchiness, patch structure, and soil moisture in three grazed and three ungrazed plots of 4 m × 4 m on a south-facing slope and the opposite, more productive north-facing slope. The measurements were done in early spring 2001 and 2002 before grazing started, in two surveys, one using two parallel transects and one using sample quadrats of 20 cm × 30 cm under three shrubs per plot and on an adjacent part of the intershrub matrix. On the north-facing slope, the sheep reduced shrub patch size as they trampled the soil mounds under the shrubs and browsed the shrub canopy. Reduced shrub patch size decreases the area and resources available for plant production. On the south-facing slope, the sheep mainly disrupted the soil crust in the intershrub area. This may increase soil erosion, but also seedling establishment. The contrast in impacts on the two slopes is due to the interaction between environment (productivity, exposure and vegetation) and sheep behavior (herbivory and trampling). On both slopes, the changes due to grazing are significant, though small. Changes in patch size and properties induced by moderate grazing can have positive and negative effects on productivity and diversity, but may also be viewed as early signs of landscape degradation as is often caused by heavy grazing.  相似文献   
8.
Herbaceous plant species composition was measured on ranches in the Thabazimbi district, Transvaal, to obtain veld composition scores and to quantify the relations between such scores and certain determinants considered important in influencing species composition. Determinants investigated were mean annual rainfall and herbivory (stocking rate). The survey was undertaken on seven game and cattle ranches in Combretum apiculatum woodland of the Mixed Bushveld (Acocks 18) of the north‐western Transvaal. Rainfall for the season preceding the vegetation survey and bulk and selective grazer stocking rates had a significant effect on veld composition scores. The recommended agricultural grazer stocking rate for the survey area is 12.5 LSU 100 ha"1 a"1. Under the present conditions and in view of the findings of this survey, it is suggested that a grazer stocking rate of 6.25 LSU 100 ha?1 a?1 be implemented.  相似文献   
9.
Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs.  相似文献   
10.
The United Kingdom Overseas Territories (UKOTs) are globally important for a high diversity of endemic and threatened plant species but are poorly represented in plant ecological literature. This lack of ecological research is compounded by a lack of funding and skills. Cost effective approaches of compiling conservation relevant information are required. Here we present the first examination of a species from the UKOTs presented within the standard framework of a Biological Flora. This framework allows a convenient way to compile ecological information and assess missing data. The account reviews all available information on Euphorbia origanoides L. (Ascension spurge) from Ascension Island (South Atlantic Ocean) relevant to understanding its ecology and conservation, including soil chemistry, climate and plant community data. E. origanoides is an endemic perennial, found in dry, lava plains of Ascension Island with soils comprised of weathered volcanic scoria. E. origanoides has suffered habitat loss through the introduction of invasive species and survival in the wild is currently under threat. We relate the information gathered for this Biological Flora to the conservation of the species in the wild and propose the framework should be used as one way of compiling information relevant for conservation managers. The framework is beneficial as it allows an evidence-based approach to conservation but also permits the prioritisation of research and can help conservation managers to meet targets for the Convention on Biological Diversity and the Global Strategy for Plant Conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号