首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
林业   45篇
  9篇
综合类   1篇
园艺   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   10篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   2篇
排序方式: 共有56条查询结果,搜索用时 562 毫秒
1.
Simulating the influence of intensive management and annual weather fluctuations on tree growth requires a shorter time step than currently employed by most regional growth models. High-quality data sets are available for several plantation species in the Pacific Northwest region of the United States, but the growth periods ranged from 2 to 12 years in length. Measurement periods of varying length complicate efforts to fit growth models because observed growth rates must be interpolated to a common length growth period or those growth periods longer or shorter than the desired model time step must be discarded. A variation of the iterative technique suggested by Cao [Cao, Q.V., 2000. Prediction of annual diameter growth and survival for individual trees from periodic measurements. Forest Sci. 46, 127–131] was applied to estimate annualized diameter and height growth equations for pure plantations of Douglas-fir, western hemlock, and red alder. Using this technique, fits were significantly improved for all three species by embedding a multi-level nonlinear mixed-effects framework (likelihood ratio test: p < 0.0001). The final models were consistent with expected biological behavior of diameter and height growth over tree, stand, and site variables. The random effects showed some correlation with key physiographic variables such as slope and aspect for Douglas-fir and red alder, but these relationships were not observed for western hemlock. Further, the random effects were more correlated with physiographic variables than actual climate or soils information. Long-term simulations (12–16 years) on an independent dataset using these annualized equations showed that the multi-level mixed effects models were more accurate and precise than those fitted without random effects as mean square error (MSE) was reduced by 13 and 21% for diameter and height growth prediction, respectively. The level of prediction error was also smaller than an existing similar growth model with a longer time step (ORGANON v8) as the annualized equations reduced MSE by 17 and 38% for diameter and height growth prediction, respectively. These models will prove to be quite useful for understanding the interaction of weather and silviculture in the Pacific Northwest and refining the precision of future growth model projections.  相似文献   
2.
Surveys were made at the end of the 1990 and 1991 growing seasons for root-inhabiting fungi in the genera Fusarium, Cylindrocarpon and Pythium from the roots of one year-old container-grown Douglas-fir and spruce seedlings grown under greenhouse conditions. In the 1990 survey of four nurseries, it was found that 61–97% of both Douglas-fir and spruce roots were colonized with Fusarium, Cylindrocarpon or Pythium. There were significantly (p0.05) more Douglas-fir roots than spruce roots colonized by Fusarium at all nurseries, however, there were significantly (p0.05) more spruce roots than Douglas-fir roots colonized by Cylindrocarpon and Pythium. Root colonization of Douglas-fir and spruce by the three fungal genera during 1991 varied from 0–82% at three nurseries, however, only at a south coastal nursery was there significantly (p0.05) more spruce than Douglas-fir roots colonized by Cylindrocarpon. Significantly more seedlings were infected in 1990 than in 1991. In 1991, there were few significant differences between Douglas-fir and spruce, in the percentage of seedlings with colonized roots and in the percentage of growth medium colonized by the fungi. However, there were significant differences between nurseries.  相似文献   
3.
Reconstruction in twenty single-cohort stands across five climax series on the eastern slope of the Washington Cascade Range found a variety of species combinations and development patterns. Western larch (Larix occidentalis Nutt.) and lodgepole pine (Pinus contorta Dougl. ex Loud) were found to be very competitive species that usually occupied a dominant position in stands in the Abies grandis, Abies lasiocarpa, and Tsuga mertensiana climax series. Interior Douglas-fir (Pseudotsuga menziesii var. glauca (Mirb.) Franco) was found in all five climax series and, although its height growth was less than that of western larch or the lodgepole pine, it was usually found in the upper stratum. These results suggest that site classification based on climax potential should be used cautiously when applied to young stand management decisions regarding seral species. For example, the difference between an Abies grandis, and a Tsuga mertensiana climax series is quite large in terms of potential productivity but in either case western larch, if present, will likely dominate these stands.  相似文献   
4.
Abstract

The growth of three young (5-6 years since planting) Douglas-fir plantations fertilized with a single low-rate application of municipal biosolids, ranging from 17-19 dry Mg ha-1, was studied. Stand measurements showed increases in DBH, height, average and total basal area, average and total volume and average and total dry-weight differences in the biosolids-fertilized vs. control. For instance, average per tree DBH was 14.7% greater than the controls, height by 2.7%, per stem basal area by 27%, per stem average volume by 33%, per stem average dry weight by 38%, basal area per hectare by 28%, volume per hectare by 32% and dry weight per hectare by 36% compared to untreated controls. Comparing differences in volume increases from initial growth periods with the latest growth period indicates that volume increases due to the biosolids treatment are continuing and apparently increasing over time. However, none of these observed differences were statistically significant (0.05 level) due to high variation within and between stands.  相似文献   
5.
On three sites in coastal northwestern Oregon, USA, seedling root and shoot development were assessed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western red-cedar (Thuja plicata Donn ex D. Don) container seedlings under varying sulfometuron methyl (Oust XP®) herbicide application treatments. Treatments consisted of application of 0.16 kg active ingredient (ai) ha?1 as a site preparation in fall 2003, a release application in fall 2004, or a control treatment with no application. Seedlings were planted in winter 2004 and measurements recorded in summer 2004, winter 2005, and summer 2005. During first season growth, western red-cedar seedlings showed the greatest negative impact to site preparation compared to the control with overall average new root length outside the root plug reduced by 67%. Significant reductions in root length also occurred for western hemlock (47%) and Douglas-fir (40%) seedlings. About 9 months after the release treatment, and 21 months after the site preparation application, there were no significant differences between treatments for any measured parameter. These findings suggest that seedlings under the site preparation treatment recovered from initial damage incurred to the root system. Lack of seedling response under the release treatment may be the result of opposing influences from the herbicide application associated with seedling phytotoxicity and enhanced seedling development resulting from effective vegetation control. Although our study was limited to 21 months following planting, reduced vegetation cover in the site preparation and release treatments suggests that these treatments may benefit future seedling growth.  相似文献   
6.
We tested methylcyclohexenone (MCH), an anti-aggregation pheromone for the Douglas-fir beetle (Dendroctonus pseudotsugae), for protection of Douglas-fir (Pseudotsuga menziesii) stands by applying MCH-releasing polymer flakes by helicopter twice during summer 2006 to five 4.05-ha plots in the State of Washington, USA. Five similar plots served as untreated controls. We assessed D. pseudotsugae flight into study plots using baited pheromone traps, and tallied D. pseudotsugae attack rates on all P. menziesii trees in 2005 and 2006. We also measured stand basal area and incorporated that as an explanatory variable in the analysis. Significantly fewer D. pseudotsugae were trapped in treated plots than in control plots, and significantly fewer P. menziesii trees were attacked in treated plots than in control plots. The attack rate in untreated stands was nearly 10 times that of treated plots, and stands with higher basal area were significantly more likely to be attacked by D. pseudotsugae than were stands of lower basal area. Attack rates in 2006 and 2005 were significantly correlated, regardless of treatment.  相似文献   
7.
Tree-ring analysis was applied to assess the impacts of the fungal disease Swiss needle cast on the radial growth of mature Douglas-fir (Pseudotsuga menziesii) forests in the western Oregon Coast Range. Although considered endemic to the Pacific Northwest, Swiss needle cast has significantly lowered productivity in Douglas-fir forests only in the past 20–30 years. To date, studies on Swiss needle cast impacts have almost exclusively involved young (<30 years) plantation trees. To better describe the history of Swiss needle cast and its impacts on older (>80 years) trees, we extracted tree cores from dominant and codominant Douglas-fir and western hemlock (Tsuga heterophylla) in three even-aged stands in western Oregon. In the least affected stand growth rates of both species did not significantly differ, while at the most severely diseased site Douglas-fir radial growth was reduced by as much as 85%. Growth reductions likely associated with Swiss needle cast were dated to as early as 1950, though the most severe impacts occurred after 1984. An index of Swiss needle cast severity significantly (p < 0.01) related to instrumental records of air temperatures such that warm conditions from March through August were associated with reduced radial growth at the most severely affected site. Overall, this study demonstrates that even mature forests of natural origin are susceptible to severe growth reductions by Swiss needle cast, that warmer spring and summer temperatures are associated with Swiss needle cast impacts, and that the disease appears to be increasing in severity.  相似文献   
8.
Snags are critical structural features for managing biological diversity in forests of the Pacific Northwest, USA. However, commercial forests in this region often contain reduced numbers of snags compared to unmanaged forests and managers require effective methods to augment snag numbers in harvest units. Therefore, we created snags by topping live trees with a mechanical harvester and studied foraging and nesting use by cavity-nesting birds of these snags in clearcuts in Douglas-fir (Pseudotsuga mensezii) forests along the west slope of the Cascade Mountain Range and east slope of the Coast Range in Oregon, USA. We used a completely randomized design to assign 6 different treatments (single or scattered distribution by 3 different densities) to 31 different harvest units. We created 1111 snags from February 1997 through April 1999 and monitored them from 2–5 years after harvest (1999–2002). Fraction of created snags with nest cavities in harvest units was generally low across all treatments and years of the study, although some individual stands demonstrated increased nesting use with snag age. While the highest fractions of snags with nest cavities were found in units with low density and scattered snags, the mean fraction of snags used for nesting did not differ among treatments. Treatment type, distribution of snags (i.e., scattered or clumped), and associated interactions did not influence fraction of snags used for foraging. However, fraction of created snags used for foraging in all harvest units increased with snag age. Fraction of snags used for foraging was greatest in the low density treatments. While this technique provides managers with a relatively economical option for creating snags, mechanical harvesters cannot be used to create tall, large snags upon which several cavity-dependent species rely and provides only a partial solution to a critical forest management issue.  相似文献   
9.
Factors affecting diurnal stem contraction in young Douglas-fir   总被引:1,自引:0,他引:1  
Diurnal fluctuation in a tree's stem diameter is a function of daily growth and of the tree's water balance, as water is temporarily stored in the relatively elastic outer cambial and phloem tissues. On a very productive site in southwestern Washington, U.S.A., we used recording dendrometers to monitor stem diameter fluctuations of Douglas-fir at plantation ages 7 and 8 and related the fluctuations to environmental variables measured on-site. Growing-season diurnal stem contraction (DSC) averaged 0.21% of stem diameter, while dormant-season DSC averaged 0.03% of stem diameter. Maximum daily stem diameter generally occurred between 7:00 and 9:00 Pacific Standard Time (PST) and minimum stem diameter occurred between 17:00 and 20:00 PST. Diurnal stem contraction during the growing season was predicted by a model that included vapor pressure deficit and solar radiation (adjusted R2 = 0.84). A similar model predicted DSC during the dormant season with an adjusted R2 = 0.26. Soil water availability was high, and soil water content was not correlated with DSC. On four of the coldest winter days (mean daytime air temperature <0 °C), large decreases in stem diameter were observed. Recording dendrometers, used for continuous diameter measurements throughout the growing season, have the potential to provide important information not only on tree growth but also on a tree's water balance.  相似文献   
10.
Douglas-fir (Pseudotusga menziesii (Mirb.) Franco), a native to the Pacific Coast Range in North America, is recognized as a tree that is long-lived and can grow rapidly to standing volumes that approach the highest recorded for temperate conifers. Managed plantations in western Oregon register maximum periodic annual increments (PAI) at ages between 20 and 40 years of ∼30 m3 ha−1 year−1. The same seed source, when planted in New Zealand and elsewhere in the Southern Hemisphere, may attain a PAI of ∼50 m3 ha−1 year−1. Is this higher productivity mainly related to climate or to isolation from native pests? To evaluate the role of climate, we obtained meteorological data from plantation sites in New Zealand and Oregon, from which we established relationships between mean monthly temperature extremes and solar irradiance, air humidity deficits, and frost frequency. Using these empirical relationships, long-term weather records were converted to the meteorological variables required to drive a process-based forest growth model, 3-PG, for sites approaching the most productive in New Zealand and in Oregon. Annual precipitation is similar in both areas, but sites in Oregon receive only 10% during the growing season, resulting in humidity deficits 30% larger than those recorded in New Zealand. According to sensitivity analyses and direct measurements, the more productive Douglas-fir forests in Oregon avoid the limiting effects of summer drought by obtaining water from the subsoil and fractured bedrock. If such forests were under a reduced evaporative demand similar to that in New Zealand, we show that they would exhibit comparable productivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号