首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   1篇
林业   1篇
  16篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1989年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Here we provide evidence that the form of carbon compound and O2 concentration exert an inter-related regulation on the production and reduction of N2O in soil. 6.7 mM d-glucose, 6.7 mM D-mannitol, 8 mM L-glutamic acid or 10 mM butyrate (all equivalent to 0.48 g C l−1) were applied to slurries of a sandy loam soil. At the start of the experiment headspace O2 concentrations were established at ∼2%, 10% and 21% O2 v/v for each C treatment, and 2 mM K15NO3 (25 atom % excess 15N) was applied, enabling quantification of 15N-N2 production, 15N-(N2O-to-N2) ratios and DNRA. The form of C compound was most important in the initially oxic (21% O2 v/v) soils, where addition of butyrate and glutamic acid resulted in greater N2O production (0.61 and 0.3 μg N2O-N g−1 soil for butyrate and glutamic acid, respectively) than the addition of carbohydrates (glucose and mannitol). Although, there was no significant effect of C compound at low initial O2 concentrations (∼2% O2 v/v), production of 15N-N2 was greatest where headspace O2 concentrations were initially, or fallen to, ∼2% O2 v/v, with greatest reduction of N2O and lowering 15N-(N2O-to-N2) ratios (∼0-0.27). This may reflect that the effect of C is indirect through stimulation of heterotrophic respiration, lowering O2 concentrations, providing sub-oxic conditions for dissimilatory nitrate reduction pathways. Addition of carbohydrates (glucose and mannitol) also resulted in greatest recovery of 15N in NH4+ from applied 15N-NO3, indicative of the occurrence of DNRA, even in the slurries with initial 10% and 21% O2 v/v concentrations. Our 15N approach has provided the first direct evidence for enhancement of N2O reduction in the presence of carbohydrates and the dual regulation of C compound and O2 concentration on N2O production and reduction, which has implications for management of N2O emissions through changing C inputs (exudates, rhizodeposition, residues) with plant species of differing C traits, or through plant breeding.  相似文献   
2.
Nitrous oxide (N2O) contributes to greenhouse effect; however, little information on the consequences of different moisture levels on N2O/(N2O+N2) ratio is available. The aim of this work was to analyze the influence of different soil moisture values and thus of redox conditions on absolute and relative emissions of N2O and N2 at intact soil cores from a Vertic Argiudoll. For this reason, the effect of water-filled porosity space (WFPS) values of soil cores of 40, 80,100, and 120% (the last one with a 2-cm surface water layer) was investigated. The greatest N2O emission occurred at 80% WFPS treatment where conditions were not reductive enough to allow the complete reduction to N2. The N2O/(N2O+N2) ratio was lowest (0–0.051) under 120% WFPS and increased with decreasing soil moisture content. N2O/(N2O+N2) ratio values significantly correlated with soil Eh; redox conditions seemed to control the proportion of N gases emitted as N2O. N2O emissions did not correlate satisfactorily with N2O/(N2O+N2) ratio values, whereas they were significantly explained by the amount of total N2O+N2 emissions.  相似文献   
3.
Leguminous leys are important sources of nitrogen (N), especially in forage-based animal production and organic cropping. Models for estimating total N2 fixation of leys—including below-ground plant-derived N (BGN)—are based on grazed or harvested leys. However, green manure leys can have different proportions of above-ground plant-derived N (AGN) and BGN when subjected to different cutting regimes. To investigate the effects of cutting on N distribution in white clover, a pot experiment was carried out using 15N techniques to determine N2 fixation, N rhizodeposition and root C and N content of cut and uncut white clover (Trifolium repens L. cv. Ramona) plants. Percentage N derived from air (%Ndfa) was lower in uncut (63%) than in cut (72%) plants, but total Ndfa was not significantly affected by cutting. The higher reliance on N2 fixation in cut plants was thus counterbalanced by lower biomass and total N content. With BGN taken into account, total plant-derived N increased by approximately 50% compared with AGN only. Cutting did not affect the proportion of BGN to standing shoot biomass N after regrowth, but decreased the proportion of BGN to total shoot biomass production during the entire growth period. Thus, estimates of N fixation in green manure leys should consider management practices such as cutting regime, as this can result in differences in above- and below-ground proportions of plant-derived N.  相似文献   
4.
Albizia adianthifolia (Schumach) W. F. Wright, a N-fixing legume tree, has a wide distribution in Africa, in Ghana occurring in high rainfall forests and in seasonally droughted forests, and is associated in the Ghanaian forest zone with dry, infertile sites. We hypothesised that A. adianthifolia hosted different rhizobial strains in different forest types, and that these different strains would show different growth responses to moisture stress and different motility and mortality in droughted soil. Three isolates, extracted from seedlings of A. adianthifolia growing in three forest types differing in seasonal drought, were identified as Bradyrhizobium elkanii and exposed to varying levels of osmotic stress. Growth responses varied between the three strains, one of which displayed clear signs of drought tolerance. A novel approach using soil leaching columns was used to test the effects of soil pore water (in terms of neck diameter) on both the survival and movement of wet and dry forest rhizobial isolates through soil columns. The responses of the isolates were significantly different, the pore neck diameter, marginally insignificant and the drought treatment insignificant. Thus the dry forest isolate survived better in all treatments, and showed less response to the treatments, than the isolate from the wet forest. The results offer preliminary evidence that Bradyrhizobium elkanii strains from A. adianthifolia in Ghana have evolved in response to local differences in seasonal water availability. These differences could assist the selection of A. adianthifolia provenances for agroforestry or land rehabilitation.  相似文献   
5.
6.
Summary The proportion of N derived from N2 fixation for 99 strains ofAzolla spp. (comprising all known species) in the presence of ammonium (40 mg/1) was assessed using a15N-dilution technique. The percentage of N derived from air varied from 29.5% to 79.9%. Although the N concentration ofAzolla spp. was not correlated with fertilizer N, it correlated fairly well with N2 fixation. Regression analysis suggests that the N yield ofAzolla spp. is more dependent on N2 fixation than on ammonium assimilation. The high correlation between N yield and isotopically determined, fixed N2 indicates that the N yield could be used as a parameter in the selection ofAzolla spp. strains that are capable of maintaining high N2 fixation in the presence of a high level of ammonium.  相似文献   
7.
 Most soils sown with field beans (Phaseolus vulgaris L.) contain indigenous rhizobia which might interfere with the establishment of inoculated strains. As a consequence, the benefits of bean inoculation are usually questioned, and the use of N fertilizer is gradually becoming a common practice. The present study had the objective of evaluating the effectiveness of inoculation and N fertilization in field soil with (site 1) and without (site 2) a previous bean-cropping history. At site 1, which had a rhizobial population of 7×102 cells g–1 soil, inoculation had no effect on nodulation or yield, whereas at site 2 (<10 cells g–1 soil) inoculation increased nodulation, nodule occupancy by the inoculated strain and grain yield. N fertilizer decreased nodulation at both sites, but increased grain yield at site 1 but not at site 2, indicating that the response to inoculation and N fertilization depends on the cropping history. When bean was cultivated for the first time, indigenous populations of rhizobia were low and high yields were accomplished solely with seed inoculation, with no further response to N fertilizer. In contrast, previous cultivation of bean increases soil rhizobia, preventing nodule formation by inoculated strains, and N fertilizer may be necessary for maximum yields. A significant interaction effect between N fertilizer and inoculation was detected for serogroup distribution only at site 2, with N fertilizer decreasing nodule occupancy by the inoculated strain and increasing the occurrence of indigenous strains. Consequently, although no benefits were obtained by the combination of inoculation and N fertilizer, this practice may be feasible with the selection of appropriate N-tolerant strains from the indigenous rhizobial population. Received: 26 May 1999  相似文献   
8.
土壤氮气排放研究进展   总被引:3,自引:0,他引:3  
自20世纪初人类发明并掌握工业合成氨的技术以来,氮肥施用量迅速增长。在一部分国家或地区,氮肥的施入量已经超过作物对氮素的需求,导致大量氮素损失到环境中,造成氨挥发、氧化亚氮排放、地下水硝酸盐污染等环境问题。土壤在微生物的作用下可以通过反硝化、厌氧氨氧化等过程将活性氮素转化为惰性氮气,达到清除过多活性氮的目的。由于大气中氮气背景浓度太高,因此很难直接准确测定土壤的氮气排放速率,导致土壤氮气排放通量、过程与调控机制研究远远落后于土壤氮循环的其他方面。本文综述了土壤氮气排放主要途径(反硝化、厌氧氨氧化与共反硝化)及其对土壤氮气排放的贡献;测定土壤氮气排放速率的方法(乙炔抑制法、氮同位素示踪法、N2/Ar比率-膜进样质谱法、氦环境法与N2O同位素自然丰度法)及其优缺点;调控土壤氮气排放通量的主要因素(氧气、可溶性有机碳、硝酸盐、微生物群落结构与功能基因表达等)及其相关作用机制。最后指出研发新的测定原位无扰动土壤氮气通量的方法是推进本领域相关研究的关键;定量典型生态系统(如旱地农田、稻田、森林、草地与湿地)土壤氮气排放通量,阐明其中的微生物学机制,模拟并预测土壤氮气排放对全球变化的响应规律是本领域的研究热点与发展方向。  相似文献   
9.
Reduction of nitrous oxide (N2O) to dinitrogen (N2) by denitrification in soils is of outstanding ecological significance since it is the prevailing natural process converting reactive nitrogen back into inert molecular dinitrogen. Furthermore, the extent to which N2O is reduced to N2 via denitrification is a major regulating factor affecting the magnitude of N2O emission from soils. However, due to methodological problems in the past, extremely little information is available on N2 emission and the N2:N2O emission ratio for soils of terrestrial ecosystems. In this study, we simultaneously determined N2 and N2O emissions from intact soil cores taken from a mountainous beech forest ecosystem. The soil cores were taken from plots with distinct differences in microclimate (warm-dry versus cool-moist) and silvicultural treatment (untreated control versus heavy thinning). Due to different microclimates, the plots showed pronounced differences in pH values (range: 6.3–7.3). N2O emission from the soil cores was generally very low (2.0 ± 0.5–6.3 ± 3.8 μg N m−2 h−1 at the warm-dry site and 7.1 ± 3.1–57.4 ± 28.5 μg N m−2 h−1 at the cool-moist site), thus confirming results from field measurements. However, N2 emission exceeded N2O emission by a factor of 21 ± 6–220 ± 122 at the investigated plots. This illustrates that the dominant end product of denitrification at our plots and under the given environmental conditions is N2 rather than N2O. N2 emission showed a huge variability (range: 161 ± 64–1070 ± 499 μg N m−2 h−1), so that potential effects of microclimate or silvicultural treatment on N2 emission could not be identified with certainty. However, there was a significant effect of microclimate on the magnitude of N2O emission as well as on the mean N2:N2O emission ratio. N2:N2O emission ratios were higher and N2O emissions were lower for soil cores taken from the plots with warm-dry microclimate as compared to soil cores taken from the cool-moist microclimate plots. We hypothesize that the increase in the N2:N2O emission ratio at the warm-dry site was due to higher N2O reductase activity provoked by the higher soil pH value of this site. Overall, the results of this study show that the N2:N2O emission ratio is crucial for understanding the regulation of N2O fluxes of the investigated soil and that reliable estimates of N2 emissions are an indispensable prerequisite for accurately calculating total N gas budgets for the investigated ecosystem and very likely for many other terrestrial upland ecosystems as well.  相似文献   
10.
Emissions of N2O and N2 were measured from Lolium perenne L. swards under ambient (36 Pa) and elevated (60 Pa) atmospheric CO2 at the Swiss free air carbon dioxide enrichment experiment following application of 11.2 g N m−2 as 15NH415NO3 or 14NH415NO3 (1 at.% excess 15N). Total denitrification (N2O+N2) was increased under elevated pCO2 with emissions of 6.2 and 19.5 mg 15N m−2 measured over 22 d from ambient and elevated pCO2 swards, respectively, supporting the hypothesis that increased belowground C allocation under elevated pCO2 provides the energy for denitrification. Nitrification was the predominant N2O producing process under ambient pCO2 whereas denitrification was predominant under elevated pCO2. The N2-to-N2O ratio was often higher under elevated pCO2 suggesting that previous estimates of gaseous N losses based only on N2O emissions have greatly underestimated the loss of N by denitrification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号